

Generational Differences in Digital Resilience in Four Countries

Shelley Boulianne

School of Communication Studies, Mount Royal University, Canada

Correspondence: Shelley Boulianne (sboulianne@mtroyal.ca)

Submitted: 22 September 2025 **Accepted:** 15 December 2025 **Published:** 12 February 2026

Issue: This article is part of the issue “Digital Resilience Within a Hypermediated Polycrisis” edited by Marc Esteve Del Valle (University of Groningen), Ansgard Heinrich (University of Groningen), and Anabel Quan-Haase (Western University), fully open access at <https://doi.org/10.17645/mac.i499>

Abstract

Multiple crises have marked the formative years of young adults. These crises heightened the need for information while also creating a large audience for misinformation. This article highlights digital resilience in four countries (the US, the UK, France, and Canada) and across different age groups, using a survey conducted in February 2021 at the apex of a series of crises. Based on a sample of 6,000 respondents, the two youngest age groups are more likely to use fact-checking websites, verify suspicious information, and report misinformation to social media platforms. These practices reflect digital resilience. In terms of cross-national differences, respondents from the US have higher use of fact-checking sites, which can be explained by the structural availability of these websites, which tend to focus on American content. In line with theories about uncertainty avoidance, respondents from France have higher rates of verification of suspicious information. Canada is distinctive in its low rates of misinformation reporting to social media platforms. While much of the scholarship has focused on political ideology as shaping engagement with misinformation, this study highlights generational differences, cultural differences, digital literacy programming, structural opportunities, and regulatory frameworks that may shape practices related to digital resilience.

Keywords

Canada; comparative politics; digital media; fact-checking websites; France; generational differences; misinformation; resilience; United Kingdom; United States

1. Introduction

Consecutive and cumulating crises have marked young adults’ formative years. These crises include the climate crisis, the pandemic, the outbreak of war in Europe, and increased conflict between Israel and Palestine. These crises have heightened the need for accurate information while also creating a fertile

ground for the creation and dissemination of false or misleading information. There are generational differences in how people respond to crises. For older generations, these crises may prompt greater news consumption to address a need for orientation (Van Aelst et al., 2021), resulting in greater news consumption during the pandemic (Andersen et al., 2024; de Bruin et al., 2021).

However, the youngest generations never developed a news media habit and instead tend to avoid the news (Espeland, 2024; Gorski & Thomas, 2022). During a crisis, they may seek out or be accidentally exposed to alternative sources of (online) information. Lower use of quality legacy news sources and higher use of online (unfiltered) sources can increase vulnerability to misinformation, conspiracy theories, and deepfakes (Humprecht et al., 2020; Mahl et al., 2023). Instead of reinforcing existing portrayals of young adults as vulnerable, this article highlights how they actively engage with misinformation in ways that contribute to their resilience against its dire effects.

The study utilizes survey data collected in 2021 to explore digital resilience during the height of the pandemic, the reframing of the climate crisis as an emergency, and immediately before the outbreak of war in Europe. While the differences are theorized in terms of social and political context (macro) and digital training (meso), the empirical work is based on individual or micro-level measures. Based on the pooled data, the two youngest age groups are more likely to check suspicious information against other online sources, report it to social media platforms/technology companies, and use fact-checking websites. These three practices are consistent with the concept of digital resilience. Generational differences in digital resilience are theorized in terms of access to digital literacy training.

In terms of cross-national differences, the US is exceptional in the high use of fact-checking sites, reflecting the structural availability of these sites, as well as high rates of misinformation exposure, social media use, and polarization, which provide motives for using these fact-checking sites. France is distinctive in relation to checking suspected misinformation against other sources, which is explained in terms of uncertainty avoidance. Finally, Canada is unique in its low rates of reporting misinformation to platforms, which may be related to the nature of digital literacy programming in Canada, which focuses on the other two activities, rather than reporting.

This research contributes new insights about digital resilience during global and perpetual crises. Additionally, the study provides new theoretical insights into understanding generational and cross-national differences. Finally, the findings and theoretical framework help to understand contemporary threats to the online information environment, including deepfakes, as well as AI-generated content more broadly.

2. Literature Review

2.1. Defining Digital Resilience Against Misinformation

According to Tomkova (2020, p. 417), digital social resilience involves using “computer and data enhanced, social adaptive processes to withstand external shocks and cyber threats.” In other words, groups and communities can utilize digital tools to address social, political, and environmental challenges (Tomkova, 2020). Tomkova (2020) mentions fact-checking and debunking as digital activities related to digital social resilience.

Humprecht et al. (2020) developed a framework for examining resilience to disinformation in different countries and tested the framework using exposure to misinformation. The current study focuses on countering misinformation, measured as three activities: using fact-checking websites, verifying misinformation against other sources, and reporting misinformation to social media platforms. The first two activities align with what Chang (2021, p. 647) refers to as “acts of authentication,” whereas the reporting of misinformation has been rarely studied in the scholarly literature.

Social media platforms/companies have modified their practices regarding the monitoring and reporting of misinformation. The platforms have terminated or reduced funding for their fact-checking initiatives and instead rely on community (or user) reports (McMahon et al., 2025). In other words, social media companies have moved the responsibility to citizens to monitor the accuracy of information. After reviewing the variety of legislative and platform-specific initiatives to combat harmful content, Chakravorti (2025, p. 219) recommends investing “in the area of user education and to institutionalize it in schools across the world...educated digital consumers represent the best—and most inclusive—defense against the scourge of disinformation.” In short, digital literacy training and skill development are critical.

In this context, it is more important than ever before to understand users’ abilities and efforts to monitor their information environment.

2.2. Generational Differences in Digital Resilience

In their resilience model, Humprecht et al. (2020) claim that low trust in news and high social media use would decrease resilience against misinformation (also see Dragomir et al., 2024). Yet, these two characteristics define young people’s experiences of media use (Fletcher et al., 2025; Kalogeropoulos et al., 2019). These patterns would suggest that young people are particularly vulnerable to misinformation. Yet, the empirical work does not offer a clear answer.

Some studies find that age negatively relates to exposure to misinformation (Bachmann et al., 2024; Boulianne & Hoffmann, 2024; Hoffmann & Boulianne, 2025), meaning that younger people have higher rates of exposure. Other studies claim there are no significant age differences in misinformation experiences (S. Lee et al., 2023; T. Lee et al., 2023; Neyazi et al., 2022). Another set of studies suggests that the relationship between age and exposure to misinformation varies by topic, with young people reporting higher exposure to Covid-19 misinformation (Boulianne et al., 2022; Chan et al., 2025) but lower levels of exposure to political misinformation compared to older individuals (Chan et al., 2025; Moore et al., 2023). Holt et al. (2025) find that middle-aged women are the most exposed to misinformation. Scholarly attention has focused more on understanding exposure to misinformation, rather than countering misinformation.

Younger people are more likely to use fact-checking websites (Chia et al., 2024; Robertson et al., 2020; cf. Park, 2024). Indeed, Robertson et al. (2020) find that age and political ideology have similar effect sizes. Young people’s greater engagement may be a result of spending more time online and a general preference for online news and information sources over offline sources (Kalogeropoulos et al., 2026). Furthermore, their greater use may be a product of greater awareness of fact-checking. Studies show that young people are more likely to report familiarity with the fact-checking movement in journalism (Lyons et al., 2020; Robertson et al., 2020). Furthermore, younger people tend to find fact-checking sites to be useful (Robertson et al., 2020).

A meta-analysis demonstrates that exposure to fact-checked information tends to reduce misperceptions (Walter et al., 2020), even in relation to deepfakes (Dan, 2025). Goyanes et al. (2025) consider a battery of activities related to verifying the accuracy of information. They find that verifying information increases confidence in identifying misinformation, based on a two-wave panel study. Despite the critical role of fact-checking in reducing misperceptions, Graham and Porter (2025) argue that there is low demand for fact-checking; few people fact-check when they are exposed to misinformation. Nonetheless, the use of fact-checking sites is indicative of digital resilience, especially related to misinformation.

According to Ofcom, 35% of online users reported harmful content (Ofcom, 2024). The survey included a range of reporting options, including reporting to Ofcom, the police, and/or the platform (Ofcom, 2024). Only 17% of young people report harmful content, such as misinformation, offensive language, and trolling, when they see it. Platforms report that of the millions of pieces of flagged content, approximately 5–6% of this content is removed (Ofcom, 2023). Since very little of the flagged content is removed, users may question whether the effort is worth it.

The process of reporting misinformation to platforms is complex and varies by platform. First, users must have the skills to identify how to report problematic content on a specific platform, since the platforms do not have standard techniques to report this problematic content. The option to report a post can be clearly labelled under the post, as is done on YouTube, but it can also be hidden in a variety of extra features, such as expressing disinterest in a post, hiding a post, or blocking or snoozing a user, as is the case with Facebook. Or, in some cases, the specific post cannot be reported, but a user can be, such as WhatsApp.

Second, users might need to choose who to report the post to: the group administrator/moderator or the platform; they would need to understand the different roles and responsibilities of administrators/moderators versus platforms. Relatedly, Facebook has options to report the post, the image, or the reel, adding to the complexity of the reporting process, which further blurs the responsibilities for addressing problematic content.

Third, users require the confidence to identify the topic of the problematic content, since different platforms use different terminology. For example, the form for reporting this content might ask if the content is harassment, hate speech, pornography, fraud, a copyright or trademark violation, illegal activities, spam, or misinformation. Some platforms include misinformation, false information, or misleading content, while others do not. Reddit, for example, has an option for manipulated content, but no option to report misinformation at the time of this article's writing.

Fourth, platforms are continually changing the process for reporting problematic content. As such, each new report of misinformation might require learning a new reporting process. The series of steps will favour young people who have stronger digital skills, but the effort required to report will also only engage those who are highly motivated to see specific content removed. The first hypothesis is:

H1: Young people are more likely to (a) visit fact-checking websites, (b) check misinformation against other sources, and (c) report misinformation to platforms.

2.3. Digital Literacy

Meta-analyses of research find that media literacy programs are an effective way to counter misinformation (Huang et al., 2024; Lu et al., 2024). Media literacy can be defined as “how people critically consume and produce media in all forms...abilities to access, evaluate, analyze, reflect, and create media across platforms, modalities, and content areas” (Mihailidis, 2022, p. 999). Digital literacy focuses on how people critically consume and produce online content. For younger generations, digital literacy would be a core part of their K-12 school curriculum.

For example, in Canada, MediaSmarts – Canada’s Centre for Digital Media Literacy provides programming to build skills in identifying misinformation. There are specific links for teachers and parents, as well as an option for self-directed learning. In their program to combat misinformation, Break the Fake, they encourage the use of fact-checking tools, recommend checking other sources, and provide tips on verifying online information. As a result of the digital literacy programming, participants develop digital skills, such as the ability to identify misinformation, including identifying deepfakes. MediaSmarts offers a tipsheet for checking deepfakes, which includes checking the source, consulting fact-checkers, and doing a reverse image search. In its programming, MediaSmarts does not cover the reporting of misinformation to social media platforms.

Media literacy programming tends to follow this same template and makes its programming available online to everyone. As such, it is not easy to connect specific programming to specific outcomes or audiences. Instead, this study considers whether a respondent is a current student as a proxy for exposure to digital literacy programs. Education could also be considered a proxy, but older people’s schooling was unlikely to cover digital literacy. In a survey of adults aged 18 or older, student status likely refers to attending a college, technical school, or university. In many cases, librarians have created digital literacy resources to help students across campus understand how to identify and check misinformation, particularly against credible sources, such as those available in the library. The second hypothesis is:

H2: Students are more likely to (a) visit fact-checking websites, (b) check misinformation against other sources, and (c) report misinformation to platforms.

2.4. Cross-National Differences in Digital Resilience

As noted, Humprecht et al. (2020) developed a framework for examining resilience to disinformation in different countries. The US is more vulnerable to disinformation due to “its large advertising market, its weak public service media, and its comparatively fragmented news consumption” (Humprecht et al., 2020, p. 506). Additionally, the US is distinctive in its two-party system, which contributes to political polarization. Empirically, social media use remains the most consistent predictor of misinformation experiences across different countries (Boulianne et al., 2022). Social media use and polarization are related (Kubin & von Sikorski, 2021). As such, the US is particularly vulnerable to misinformation; however, American citizens may also be motivated to engage with misinformation due to high polarization, which encourages citizens to verify or discredit information, especially claims made by out-groups.

Huang et al.’s (2024) meta-analysis of media literacy interventions and misinformation found that these interventions are most effective in cultures with high uncertainty avoidance. In cultures characterized as

having high uncertainty avoidance, individuals tend to feel threatened by the unknown (Hofstede, 2025). In the context of misinformation, citizens in these cultures have a strong desire to seek new information and develop skills that will reduce their uncertainty (Huang et al., 2024). In these cultures, media literacy interventions may be more effective.

We extend this idea to countering misinformation. Those in high uncertainty avoidance cultures will be motivated to use fact-checking sites and other sources of information to determine the truthfulness of the information. They want to resolve their uncertainty because it creates unsettled feelings or causes anxiety. For the four countries considered in this study, France has the highest uncertainty avoidance (Hofstede, 2025). If there's support for this theory, we would see a consistent pattern of respondents in France having higher levels of countering misinformation.

However, untangling the theoretical explanation of cross-national differences is challenging, as France also differs from the other three countries in terms of lower social media use and lower trust in the media, according to the *Digital News Report* (Newman et al., 2024). Table 1 offers macro-level statistics about each country. Social media use and trust in media are core variables for the Online Disinformation Resilience model, which focuses on exposure to misinformation (Humprecht et al., 2020). France has low use of social media, suggesting high resilience. On the other hand, France has low trust in the news, suggesting low resilience. As such, understanding France's resilience will need to consider its high uncertainty-avoidance culture, as well as the media system and adoption of social media.

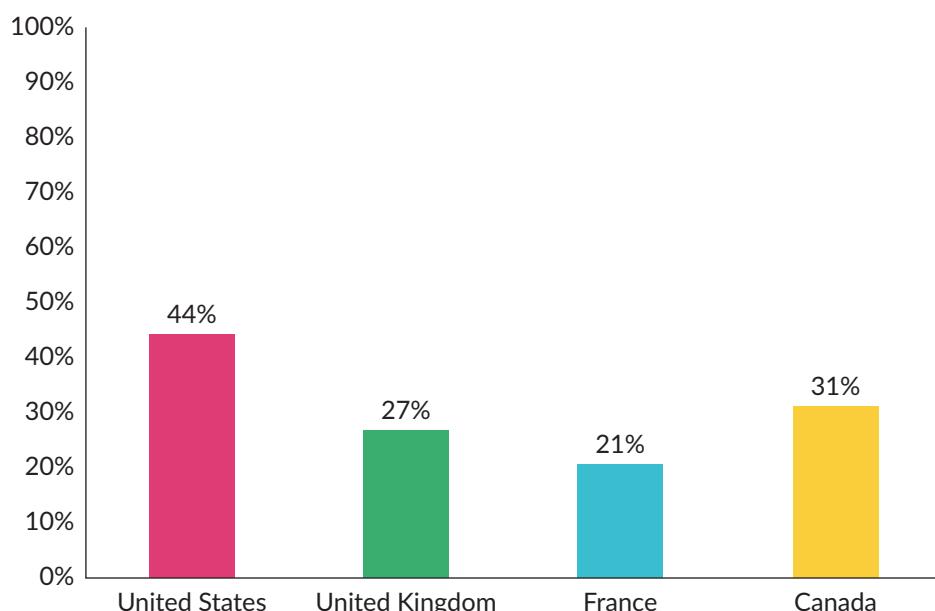
Table 1. Macro-level characteristics of the four countries.

	US	UK	France	Canada
Uncertainty avoidance score (Hofstede, 2025)	46	35	86	48
Percentage who trust the news (Newman et al., 2024)	32	36	31	39
Percentage who use Facebook (Newman et al., 2024)	61	63	55	60
Percentage who use YouTube (Newman et al., 2024)	60	53	47	62

To cover the different possible results, a research question, rather than a hypothesis, is proposed:

RQ1: Are there cross-national differences in the countering of misinformation (visiting fact-checking websites, checking misinformation against other sources, and reporting of misinformation to platforms)?

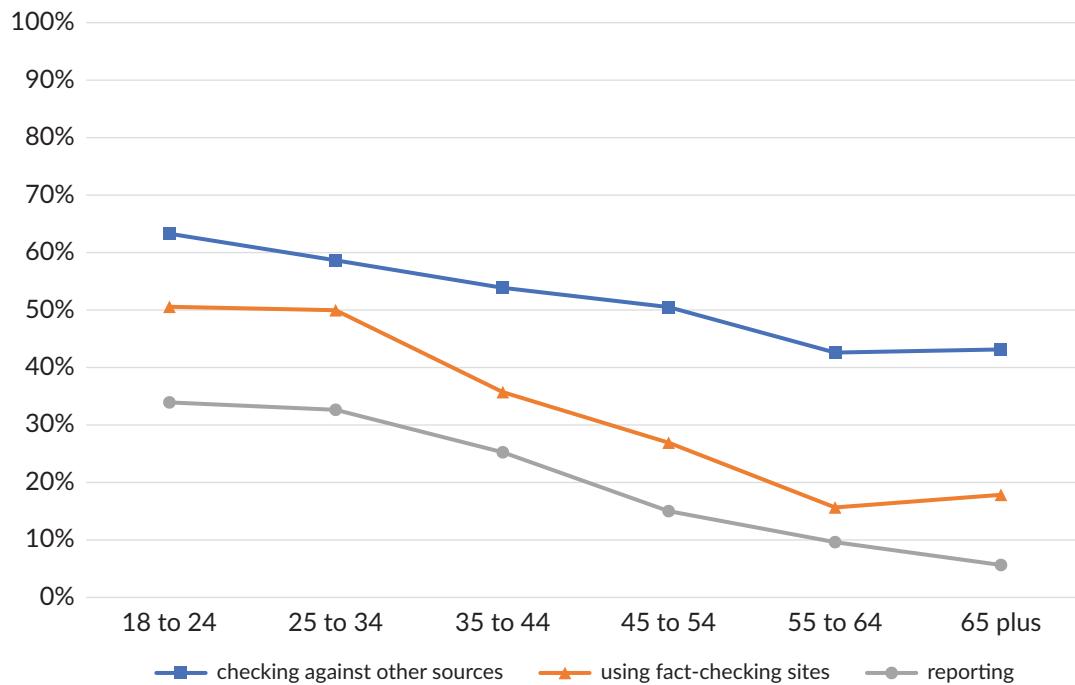
3. Methods

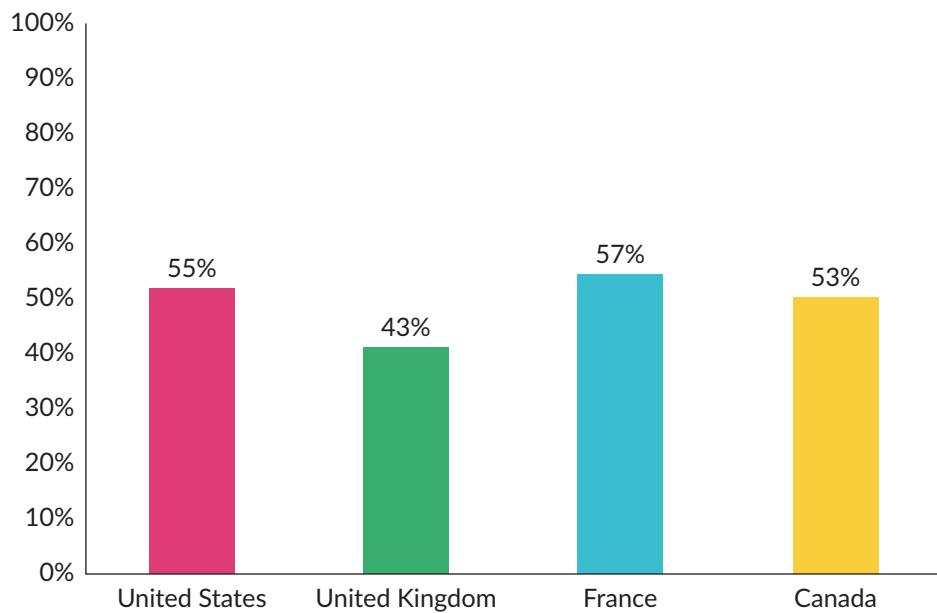

3.1. Sample

This study is based on a survey administered to an online panel by Kantar-Lightspeed in February 2021. The full sample includes more than 6,000 respondents with 1,500 respondents in each of the four countries: Canada, the UK, France, and the US. Strict quotas were used to ensure the composition of the online panel matched census data for each country in terms of age, gender, and education. The survey was administered in both English and French. The project was approved (MacEwan University, File No. 101856) in accordance with Canada's *Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans*. The survey was funded through Canadian Heritage's Digital Citizenship Initiative. The choice of countries is based on Canada as the

focal point—Canada's two founding nations and Canada's only neighbour. This study investigates generational and cross-national variations in practices that constitute digital resilience, focusing on the role of digital literacy. Replication and data files are available at <https://doi.org/10.6084/m9.figshare.30837497>

3.2. Measures


Respondents were asked, "During the past 12 months, how often have you visited the websites OR social media pages of...a fact-checking organization, such as Politifact and Fact Check?" The last example covers the American FactCheck.org as well as the AFP (Agence France-Presse) Fact Check. While respondents were offered responses related to frequency, the distribution of answers was highly skewed because only 31% of the pooled sample had used these sources. As such, the frequency measure was converted into a dichotomous variable: *used* (1) or *did not* (0). Figure 1 outlines the differences by country. Respondents from France were the least likely to report using fact-checking websites.


Figure 1. Cross-national differences in the use of fact-checking websites.

In terms of age differences for the use of fact-checking sites (Figure 2, orange triangle line), the two youngest age groups were the most likely to report using them (51% and 50%), whereas the oldest age groups were the least likely to use them (16% and 18%).

The survey posed a series of questions about misinformation, followed by questions about the topic, source, and reactions. If respondents reported seeing misinformation (false or misleading information) on social media in the past month, they received a follow-up question: "When you saw this misinformation, did you check the information to compare it to other sources of information?" For the pooled sample, 52% reported that they checked the information against other sources. Figure 3 reports the country-specific results. Respondents from the UK were the least likely to check the misinformation against other sources. In terms of age differences (Figure 2, blue square line), the youngest age group was the most likely to report checking this information (63%), whereas the two oldest age groups were the least likely (43%).

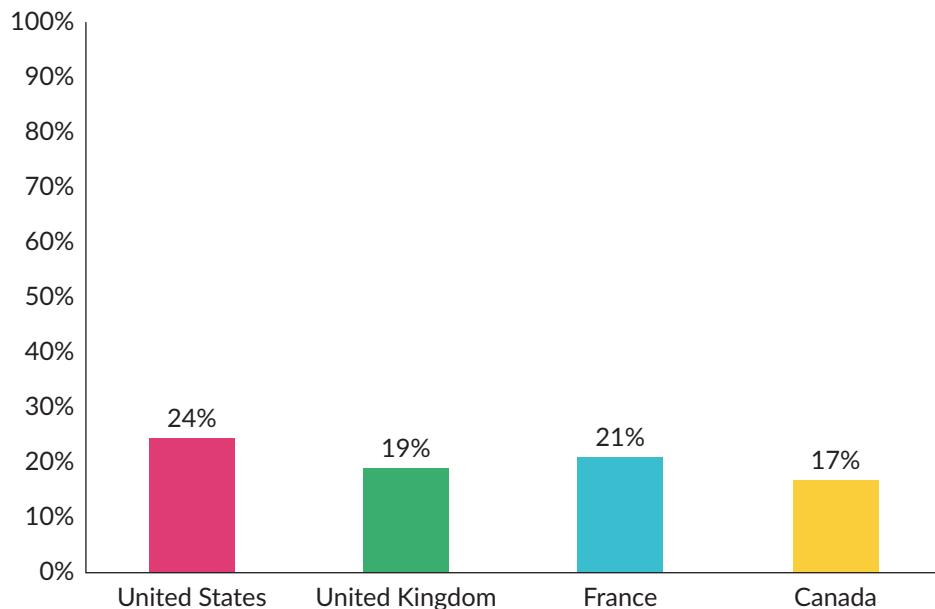


Figure 2. Age differences in the countering of misinformation.

Figure 3. Cross-national differences in the checking of misinformation against other sources.

For those who reported seeing misinformation on social media in the past month, they were asked: "When you saw this misinformation, did you report it to the social media company/platform (e.g., Facebook)?" For the pooled sample, only 20% claimed to have reported misinformation. Figure 4 outlines the country differences in reporting misinformation to the social media company/platform. Respondents from the US were more likely to report misinformation to the social media company/platform, and Canadians were the least likely. In terms of age differences (Figure 2, grey circle line), the two youngest age groups were the most likely to report misinformation to platforms (34% and 33%), whereas the oldest age group was the least likely (6%).

Figure 4. Cross-national differences in the reporting of misinformation to the social media company/platform.

Table 2 offers descriptive statistics and measurement details for the predictor variables. As noted above, the percentages for age, gender, and education match official or census data within each country (National Institute of Statistics and Economic Studies, 2018; Office for National Statistics, 2016; Statistics Canada, 2016; US Census, 2019). Respondents were offered a series of categories for household income in the currency of their respective countries. These categories were then converted into quintiles, so that approximately 20% of respondents are in each of the five new categories; this variable is not included in Table 2 because the means and standard deviations are not interpretable. To assess student status, we asked about respondents' current status (or how they spend the majority of their time). Our measure is effective in capturing full-time college or university students, but is unlikely to capture part-time students who also work.

The statistical models account for political interest and ideology, as prior studies in the US (Graham & Porter, 2025; Park, 2024; Robertson et al., 2020) and in Europe (Goyanes et al., 2025; Lyons et al., 2020) found these variables to predict attitudes toward and the use of fact-checking sites. As noted in the literature review, the effect size for political ideology is equivalent in magnitude to the effect of age on the use of fact-checking sites (Robertson et al., 2020). Yet, scholarship has primarily focused on political ideology at the expense of theorizing age differences.

In addition, the models control for self-assessed knowledge about deepfakes. This question was part of a series of questions designed to measure digital skills. This single item is used as it is the most aligned with the topic of this study. There are no claims about causality with the inclusion of this variable; instead, the results should be treated as correlational and exploratory.

Table 2. Descriptive statistics by country.

	Min-Max	All	US	UK	France	Canada
Ages 18 to 24	0 or 1	10%	12%	11%	10%	12%
Ages 25 to 34	0 or 1	17%	18%	17%	15%	16%
Ages 35 to 44	0 or 1	16%	16%	16%	16%	15%
Ages 45 to 54	0 or 1	18%	17%	18%	17%	18%
Ages 55 to 64	0 or 1	16%	10%	17%	22%	16%
Ages 65 or more	0 or 1	23%	27%	21%	20%	23%
Females	0 or 1	51%	51%	49%	51%	52%
High school or less	0 or 1	49%	42%	56%	56%	42%
Some college	0 or 1	18%	19%	10%	18%	25%
Bachelor's degree	0 or 1	24%	26%	26%	19%	25%
More than a bachelor's degree	0 or 1	9%	13%	8%	7%	8%
Student	0 or 1	5%	5%	5%	5%	6%
Please rate your understanding of the following digital concepts: deepfake (<i>no understanding, little, some, good, full understanding</i>)	1-5	2.06 (1.31)	2.12 (1.39)	1.92 (1.25)	2.20 (1.30)	1.99 (1.28)
How interested would you say you are in politics? (<i>not at all, not very, fairly, very</i>)	1-4	2.52 (0.96)	2.73 (0.99)	2.51 (0.94)	2.29 (0.97)	2.54 (0.91)
In politics, people sometimes talk of left and right. Where would you place yourself on this scale?						
0 to 3 are <i>left-wing</i>	0 or 1	18%	17%	16%	19%	21%
7 to 10 are <i>right-wing</i>	0 or 1	26%	35%	25%	25%	19%
All others	0 or 1	56%	48%	59%	56%	60%

4. Results

Regarding H1 (pooled sample), the two youngest age groups do not differ significantly in their ability to counter misinformation, as measured by the three different activities; the oldest age group is the least likely to engage in these three activities (Tables 3, 4, and 5). These patterns underscore the need for a generational, rather than a linear, approach to age. However, the strength of these patterns differs slightly by country and by activity. These patterns are strongest and most consistent when considering the use of fact-checking websites (Table 1) and reporting misinformation to platforms (Table 3). The age patterns are inconsistent in the UK and France when considering the verification of misinformation against sources (Table 2). In these two countries, age differences are smaller and not significant in relation to checking misinformation against other sources.

As noted, we use current student status to identify respondents who are likely to have received digital literacy training (H2). For the most part, we find that across the four countries, student status is not a significant

predictor of engaging in these three activities. Being a current student in Canada is negatively correlated with the use of fact-checking websites (Table 1). The direction of this relationship is contrary to what we expect.

Regarding cross-national differences (RQ1), we find that the US is exceptional in the higher rates of using fact-checking websites (Table 3; Figure 1). In terms of checking misinformation, Canada has similar rates as the US, but France has significantly higher rates and the UK has significantly lower rates, compared to the US (Table 4; Figure 3). In terms of reporting misinformation to social media platforms, France and the UK do not differ significantly from the US; however, Canada has lower rates of reporting compared to the US (Table 5; Figure 4).

Beyond the research questions and hypotheses, several other noteworthy findings are also present. In all four countries, the self-assessed ability to identify deepfakes positively relates to all three measures of countering information (Tables 3, 4, and 5). With cross-sectional data, we cannot assess the causal flow. This self-assessed knowledge may predict these three activities, but likewise, these three activities may predict a respondent's ability to identify deepfakes. As such, we assess correlations. Understanding deepfakes positively correlates with using fact-checking websites, verifying misinformation against other sources, and reporting misinformation to platforms.

Educational differences are rarely statistically significant; however, they are stronger in the use of fact-checking websites than in the other two activities (pooled sample in Table 3 versus pooled samples in Tables 4 and 5). There are only a few ideological differences. Of the three measures, political ideology appears to have the strongest role in the reporting of misinformation to social media platforms. In the US and UK, right-wing users are more likely to report misinformation to social media platforms. In Canada, both ideological groups are more likely to use fact-checking websites compared to those with no ideological affiliation. Political ideology does not predict the checking of misinformation in any of the four countries studied. Political interest is a consistent and positive predictor of countering misinformation (all three activities).

Across the three activities and four countries, we find only one gender difference: In France, females are less likely to use fact-checking websites. Income rarely predicts the counteraction of misinformation. The exceptions are in the US, where it increases the use of fact-checking sites, and in the UK and France, where it reduces the reporting of misinformation to social media platforms. Overall, these models work better for explaining rates of fact-checking, compared to the other two activities (see Nagelkerke R-squared for the various models).

Table 3. Logistic regression of the use of fact-checking websites.

	Pooled		US		UK		France		Canada	
	ExpB	p	ExpB	p	ExpB	p	ExpB	p	ExpB	p
Ages 25 to 34 (H1)	0.834	0.165	0.685	0.141	1.016	0.951	1.430	0.225	0.570	0.033
Ages 35 to 44 (H1)	0.466	< 0.001	0.452	0.003	0.617	0.080	0.646	0.162	0.317	< 0.001
Ages 45 to 54	0.346	< 0.001	0.206	< 0.001	0.510	0.016	0.377	0.002	0.346	< 0.001
Ages 55 to 64	0.192	< 0.001	0.181	< 0.001	0.401	0.002	0.184	< 0.001	0.110	< 0.001
Ages 65 or more	0.168	< 0.001	0.185	< 0.001	0.163	< 0.001	0.191	< 0.001	0.108	< 0.001
Females	0.875	0.054	1.042	0.756	0.890	0.424	0.608	0.002	0.901	0.445
Some college	1.258	0.014	1.438	0.041	1.142	0.563	1.149	0.509	1.298	0.123
Bachelor's degree	1.374	< 0.001	1.263	0.170	1.325	0.092	1.511	0.034	1.346	0.077
More than bachelor's degree	1.331	0.019	1.354	0.163	0.986	0.959	1.532	0.123	1.133	0.630
Income quintile	0.990	0.705	1.187	0.001	0.943	0.257	0.906	0.108	0.920	0.115
Student (H2)	0.647	0.009	0.626	0.175	0.517	0.075	0.841	0.638	0.530	0.039
Deepfake understanding	1.470	< 0.001	1.528	< 0.001	1.603	< 0.001	1.429	< 0.001	1.378	< 0.001
Political interest	1.706	< 0.001	1.747	< 0.001	1.542	< 0.001	1.801	< 0.001	1.760	< 0.001
Left-wing	1.161	0.094	1.382	0.070	1.066	0.741	0.778	0.227	1.391	0.040
Right-wing	1.221	0.013	0.991	0.948	1.300	0.116	1.034	0.853	1.772	0.001
Canada (RQ1)	0.613	< 0.001								
UK (RQ1)	0.489	< 0.001								
France (RQ1)	0.338	< 0.001								
Nagelkerke R-squared	0.312		0.336		0.272		0.298		0.279	
<i>n</i>	5,593		1,403		1,356		1,392		1,442	

Notes: The reference groups are youth (those aged 18 to 24 years), males, those with high school or less, non-students, those in the centre or reporting no ideological leanings, and the US; missing cases are almost entirely due to missing data on income; the table reports odds ratios; when the odds ratios are greater than 1.00, the relationship is positive; when the odds ratios are less than 1.00, the relationship is negative.

Table 4. Logistic regression of checking misinformation against other sources.

	Pooled		US		UK		France		Canada	
	ExpB	p	ExpB	p	ExpB	p	ExpB	p	ExpB	p
Ages 25 to 34 (H1)	0.814	0.129	0.589	0.046	0.889	0.667	1.237	0.503	0.897	0.684
Ages 35 to 44 (H1)	0.726	0.023	0.503	0.014	0.968	0.910	1.003	0.994	0.695	0.195
Ages 45 to 54	0.706	0.015	0.305	< 0.001	1.020	0.945	1.035	0.917	0.866	0.607
Ages 55 to 64	0.515	< 0.001	0.249	< 0.001	0.718	0.276	0.814	0.524	0.533	0.033
Ages 65 or more	0.453	< 0.001	0.250	< 0.001	0.742	0.332	0.593	0.116	0.494	0.015
Females	0.981	0.786	0.838	0.215	1.182	0.268	0.985	0.917	1.015	0.915
Some college	1.174	0.089	1.306	0.161	0.923	0.745	1.335	0.129	1.131	0.464
Bachelor's degree	1.178	0.063	1.252	0.224	1.225	0.238	1.865	0.003	0.811	0.215
More than bachelor's degree	1.273	0.063	1.592	0.054	1.340	0.316	0.952	0.863	1.164	0.568
Income quintile	0.958	0.111	0.960	0.472	0.917	0.108	0.991	0.876	0.975	0.640
Student (H2)	0.925	0.651	0.869	0.697	0.590	0.154	1.529	0.294	1.089	0.784
Deepfake understanding	1.258	< 0.001	1.252	< 0.001	1.314	< 0.001	1.253	< 0.001	1.186	0.001
Political interest	1.510	< 0.001	1.477	< 0.001	1.709	< 0.001	1.401	< 0.001	1.496	< 0.001
Left-wing	1.136	0.160	1.446	0.060	0.911	0.637	1.109	0.587	1.163	0.353
Right-wing	1.039	0.646	0.871	0.376	1.188	0.323	1.008	0.965	1.219	0.251
Canada (RQ1)	1.044	0.643								
UK (RQ1)	0.750	0.003								
France (RQ1)	1.381	0.001								
Nagelkerke R-squared	0.130		0.186		0.148		0.132		0.091	
<i>n</i>	3,926		1,033		914		911		1,068	

Notes: The reference groups are youth (those aged 18 to 24 years), males, those with high school or less, non-students, those in the centre or reporting no ideological leanings, and the US; missing cases are due to a filter—only those who reported seeing misinformation were asked this follow-up question; the table reports odds ratios; when the odds ratios are greater than 1.00, the relationship is positive; when the odds ratios are less than 1.00, the relationship is negative.

Table 5. Logistic regression of reporting misinformation to the social media company/platform.

	Pooled		US		UK		France		Canada	
	ExpB	p	ExpB	p	ExpB	p	ExpB	p	ExpB	p
Ages 25 to 34 (H1)	0.857	0.268	0.705	0.166	0.907	0.750	1.530	0.195	0.582	0.055
Ages 35 to 44 (H1)	0.661	0.006	0.502	0.013	0.779	0.452	1.180	0.634	0.421	0.006
Ages 45 to 54	0.384	< 0.001	0.228	< 0.001	0.440	0.023	0.672	0.280	0.336	0.001
Ages 55 to 64	0.220	< 0.001	0.109	< 0.001	0.455	0.044	0.261	0.001	0.180	< 0.001
Ages 65 or more	0.127	< 0.001	0.051	< 0.001	0.224	0.001	0.296	0.004	0.093	< 0.001
Females	0.973	0.763	0.837	0.314	0.961	0.841	1.107	0.589	0.966	0.852
Some college	1.158	0.229	0.853	0.523	1.099	0.759	1.335	0.225	1.612	0.036
Bachelor's degree	1.043	0.703	0.774	0.265	0.995	0.984	1.274	0.298	1.284	0.264
More than bachelor's degree	1.052	0.747	0.938	0.823	1.383	0.340	0.659	0.250	1.299	0.455
Income quintile	0.913	0.008	1.009	0.896	0.851	0.022	0.851	0.027	0.942	0.388
Student (H2)	0.985	0.930	0.743	0.387	1.320	0.486	1.096	0.818	0.912	0.781
Deepfake understanding	1.341	< 0.001	1.318	< 0.001	1.357	< 0.001	1.424	< 0.001	1.239	0.001
Political interest	1.371	< 0.001	1.531	< 0.001	1.347	0.013	1.305	0.011	1.285	0.019
Left-wing	0.936	0.576	1.174	0.499	1.116	0.684	0.616	0.061	0.909	0.663
Right-wing	1.553	< 0.001	1.496	0.039	2.795	< 0.001	1.142	0.526	1.201	0.407
Canada (RQ1)	0.755	0.018								
UK (RQ1)	0.808	0.080								
France (RQ1)	1.021	0.864								
Nagelkerke R-squared	0.214		0.321		0.208		0.210		0.154	
<i>n</i>	3,926		1,033		914		911		1,068	

Notes: The reference groups are youth (those aged 18 to 24 years), males, those with high school or less, non-students, those in the centre or reporting no ideological leanings, and the US; missing cases are due to a filter—only those who reported seeing misinformation were asked this follow-up question; the table reports odds ratios; when the odds ratios are greater than 1.00, the relationship is positive; when the odds ratios are less than 1.00, the relationship is negative.

5. Conclusion

5.1. Digital Resilience, Misinformation, and Crises

Digital resilience involves using digital tools to address social, political, and environmental threats and shocks (Tomkova, 2020). In 2021, the pandemic was a salient crisis, but the climate crisis continued to be a pressing issue, with European war and Middle Eastern conflicts emerging soon after. Young people have spent their formative years in a continuous state of crisis. The uncertainty surrounding these crises has increased the need for information (Van Aelst et al., 2021), but also provided a large audience for misinformation. In response, young adults engaged in practices related to digital resilience, particularly those aimed at countering misinformation.

Much of the work on misinformation has focused on exposure to and sharing of misinformation. In contrast, this study makes a distinctive contribution to understanding the countering of misinformation, particularly using fact-checking websites, verifying misinformation against other sources, and reporting misinformation to social media platforms. While the use of fact-checking websites (Chia et al., 2024; Park, 2024; Robertson et al., 2020) and checking misinformation against other sources (Chang, 2021; Goyanes et al., 2025) have been studied, the reporting of misinformation to social media platforms has been rarely studied in the scholarly literature. Yet, the reporting of misinformation has taken on new importance, as social media platforms terminate their funding for fact-checking initiatives and, instead, rely on user reports (McMahon et al., 2025; Ofcom, 2023, 2024). Given the challenges of legislating content moderation (Chakravorti, 2025), digital literacy programming has become increasingly important in building resilience to misinformation (Huang et al., 2024; Lu et al., 2024).

5.2. Age Differences in Digital Resilience to Misinformation

This study adopts a generational perspective (RQ1), examining differences in access to digital literacy programs and diverse formative experiences due to crisis experiences. This approach contrasts with theorizing and modeling linear age effects. Indeed, the scholarship on age and misinformation yields mixed results when age is modelled as a linear effect (Bachmann et al., 2024; Boulianne & Hoffmann, 2024; Hoffmann & Boulianne, 2025; S. Lee et al., 2023; T. Lee et al., 2023; Neyazi et al., 2022). A generational analysis helps to explain the discrepant findings—age effects are not linear, but instead marked by generational experiences.

The survey documents that the youngest generations of adults (18- to 24-year-olds and 25- to 34-year-olds) are the most likely to engage in digital resilient practices. In part, their greater engagement can be attributed to increased exposure to digital literacy training as part of their schooling. However, the other explanation is the structural conditions in which they live. They are more likely to be exposed to misinformation due to their greater use of social media. Social media use is a significant factor in exposure to misinformation (Bachmann et al., 2024; Boulianne et al., 2022; S. Lee et al., 2023; T. Lee et al., 2023). With greater exposure comes greater opportunities (or prompts) to engage in practices demonstrating digital resilience.

Consistent with other studies, this article documents that younger age groups are more likely to use fact-checking websites (Chia et al., 2024; Robertson et al., 2020; cf. Park, 2024). These age group differences reflect a general preference for online news and information sources over offline sources

(Kalogeropoulos et al., 2026) and a distrust of traditional media as a source of information (Fletcher et al., 2025; Kalogeropoulos et al., 2019). In addition, young people are more likely to report familiarity with and the usefulness of fact-checking sites (Lyons et al., 2020; Robertson et al., 2020). Finally, these age group differences can be explained by the level of access to digital literacy programs, which encourage the use of fact-checking websites.

5.3. Digital Literacy

The study uses current student status as a proxy measure of exposure to digital literacy training (H2). Contrary to the hypothesis, being a student did not increase the use of fact-checking sites. The relationship was negative and statistically significant in Canada. As such, despite the MediaSmarts example provided in the introduction, Canadian students are not using fact-checking sites. There are two possible explanations—one is a lack of awareness, and the other is a lack of Canadian-specific content on fact-checking sites. Many fact-checking sites are available in the US, focusing on American content, which explains why US respondents report greater use of these sites, according to this survey (Figure 1; Table 3). Canada does not have a Snopes, Politifact, etc. There are some small-scale initiatives, but nothing on the same scale as those in the US media sphere. The lower use of fact-checking sites among Canadians, particularly Canadian students, could be attributed to a lack of awareness, but it can also reflect the absence of large, Canadian-specific fact-checking sites.

Further research might assess digital literacy training more directly. The survey could ask if the respondent had received digital skills training, when, and on what topics. While the details may be difficult for respondents to recall, this information would be valuable for assessing the effects of digital literacy training. In 2021, when these data were collected, citizens likely relied on Google search results to check information, assuming they did not know the URL for a fact-checking site. In 2025, they are likely to be exposed (unless they possess the digital skills to opt out) to Google's AI-generated summaries of information. These AI-generated summaries are not always transparent about their sources, making the summaries vulnerable to misinformation. Digital literacy programming needs to tackle a new dimension—AI literacy skills.

As noted, there is little scholarly attention to the reporting of misinformation to social media platforms or technology companies. Indeed, the MediaSmarts digital literacy training does not mention the need to report misinformation. Ofcom surveys suggest that young people are less likely to report harmful content compared to older people (Ofcom, 2023, 2024). This cross-national survey suggests otherwise: Young adults are more likely to report misinformation compared to older age groups. Young people's greater digital skills may enable them to navigate the process of reporting misinformation. As noted, the reporting process differs by platform and changes regularly. Furthermore, the terminology used in the reporting process differs and requires understanding the difference between misinformation and other harmful content, such as hate speech and harassment.

The Ofcom studies raise another issue: Why bother reporting when only 5–6% of the problematic content is removed (Ofcom, 2023)? If users were aware of the low response rate to complaints of harmful content, they might not see the value in spending their time reporting it. As noted, social media companies are increasingly relying on users to report this content (McMahon et al., 2025). Chakravorti (2025) describes the challenge of getting platforms to moderate content, concluding that the government's regulatory efforts in one country could result in higher exposure to misinformation in other countries where governments are not regulating content. Instead, Chakravorti (2025) recommends digital literacy training.

5.4. Cross-National Differences in Digital Resilience to Misinformation

In terms of cross-national differences (RQ1), the theoretical claims suggest that the US could be distinctive due to political polarization and large economic incentives (Humprecht et al., 2020), but France could also be unique due to higher uncertainty avoidance (Hofstede, 2025; Huang et al., 2024) as well as lower social media use and media trust (Newman et al., 2024). The US is exceptional in the higher use of fact-checking sites (Figure 1; Table 3), given the availability of these different websites. However, France is distinctive in its higher rates of verification (Figure 3; Table 4), which aligns with the uncertainty avoidance argument. Respondents from France seek out additional sources to verify suspicious information as part of reducing the uncertainty associated with suspicious information.

In terms of reporting misinformation to platforms, this activity is rare in all countries, but it is lowest in Canada (Figure 4; Table 5). Existing theories do not establish an expectation for Canada to be distinctive in this regard. However, the findings clearly indicate a need for interventions. For example, MediaSmarts programming could be revised to include training on various methods for reporting this content to platforms or other authorities. Given the platforms' low rates of removing harmful content, Canada and other countries might consider offering a separate reporting process, such as that provided through Ofcom in the UK.

The survey relies on self-reports of countering misinformation: using fact-checking sites, checking misinformation against other sources, and reporting to social media platforms. Future research could use web tracking data to assess the engagement in these activities and offer details on these practices. Despite this limitation, this study provides unique insights into digital resilience by examining generational and cross-national differences in resilience to online misinformation. The article discusses the role of digital literacy programming in building digital societal resilience. To understand generational differences across the globe, studies would need to consider the availability of digital training programs and how these may differ in content and format. The data were collected during a time of great crisis and may not apply in more settled times. In a period of multiple crises, citizens require an inventory of practices to cope with the threats to the information environment.

Funding

The survey was funded by a grant from the Digital Citizenship Initiative (Canadian Heritage) to the author. Publication of this article in open access was made possible through the institutional membership agreement between Mount Royal University and Cogitatio Press.

Conflict of Interests

The author declares no conflict of interests.

Data Availability

Replication and data files are available at <https://doi.org/10.6084/m9.figshare.30837497>

References

Andersen, K., Shehata, A., Skovsgaard, M., & Strömbäck, J. (2024). Selective news avoidance: Consistency and temporality. *Communication Research*. Advance online publication. <https://doi.org/10.1177/00936502231221689>

Bachmann, I., Valenzuela, S., Mujica, C., Labarca, C., Grassau, D., & Halpern, D. (2024). A credibility divide? Discerning truth from misinformation in Chile. *International Journal of Public Opinion Research*, 36(3), Article edae017.

Boulianne, S., & Hoffmann, C. P. (2024). Perceptions and concerns about misinformation on Facebook in Canada, France, the United States, and the United Kingdom. *International Journal of Public Opinion Research*, 36(4), Article edae048.

Boulianne, S., Tenove, C., & Buffie, J. (2022). Complicating the resilience model: A four-country study about misinformation. *Media and Communication*, 10(3), 169–182.

Chakravorti, B. (2025). The disinformation paradox: Why regulating online content at home may make matters worse in the world. In B. Chakravorti & J. P. Trachtman (Eds.), *Defeating disinformation: Digital platform responsibility, regulation and content moderation on the global technological commons* (pp. 202–219). Cambridge University Press.

Chan, M., Kuznetsov, D., Yi, J., Lee, F., & Chen, H. T. (2025). Distributed discovery of news and perceived misinformation exposure: A cross-continent application of the Resilience to Online Disinformation Framework. *The International Journal of Press/Politics*, 30(1), 277–298.

Chang, C. (2021). Fake news: Audience perceptions and concerted coping strategies. *Digital Journalism*, 9(5), 636–659.

Chia, S. C., Lu, F., & Gunther, A. C. (2024). Who fact-checks and does it matter? Examining the antecedents and consequences of audience fact-checking behaviour in Hong Kong. *The International Journal of Press/Politics*, 29(2), 438–458.

Dan, V. (2025). Deepfakes as a democratic threat: Experimental evidence shows noxious effects that are reducible through journalistic fact checks. *The International Journal of Press/Politics*. Advance online publication. <https://doi.org/10.1177/19401612251317766>

de Bruin, K., De Haan, Y., Vliegenthart, R., Kruikemeier, S., & Boukes, M. (2021). News avoidance during the Covid-19 crisis: Understanding information overload. *Digital Journalism*, 9(9), 1286–1302.

Dragomir, M., Rúas-Araújo, J., & Horowitz, M. (2024). Beyond online disinformation: Assessing national information resilience in four European countries. *Humanities and Social Sciences Communications*, 11(1), Article 101.

Espeland, E. (2024). The dynamics of political interest and news media avoidance: A generational and longitudinal perspective. *Journalism Studies*, 25(12), 1476–1497.

Fletcher, R., Andı, S., Badrinathan, S., Eddy, K. A., Kalogeropoulos, A., Mont'Alverne, C., Robertson, C. T., Arguedas, A. R., Schulz, A., Toff, B., & Nielsen, R. K. (2025). The link between changing news use and trust: Longitudinal analysis of 46 countries. *Journal of Communication*, 75(1), 1–15.

Gorski, L. C., & Thomas, F. (2022). Staying tuned or tuning out? A longitudinal analysis of news-avoiders on the micro and macro-level. *Communication Research*, 49(7), 942–965.

Goyanes, M., Lee, S., Salgado, S., & Gil de Zúñiga, H. (2025). Enhancing self-perceived disinformation identification in democracy: The impact of fact-checking integration into daily news consumption practices. *Journal of Broadcasting & Electronic Media*, 69(3), 331–352.

Graham, M. H., & Porter, E. V. (2025). Increasing demand for fact-checking. *Political Communication*, 42(2), 325–348.

Hoffmann, C. P., & Boulianne, S. (2025). Concerns about misinformation on Instagram in five countries. *Journal of Elections, Public Opinion and Parties*, 35(3), 409–431.

Hofstede, G. (2025). *The 6-D model of national culture*. Geert Hofstede. <https://geerthofstede.com/culture-geert-hofstede-gert-jan-hofstede/6d-model-of-national-culture>

Holt, A. E., Charquero-Ballester, M., Walter, J. G., & Bechmann, A. (2025). Beyond engagement: Demographic, temporal, and topic variation in misinformation exposure on Facebook across European media systemic regions. *Journal of Elections, Public Opinion and Parties*, 35(3), 432–451.

Huang, G., Jia, W., & Yu, W. (2024). Media literacy interventions improve resilience to misinformation: A meta-analytic investigation of overall effect and moderating factors. *Communication Research*. Advance online publication. <https://doi.org/10.1177/00936502241288103>

Humprecht, E., Esser, F., & Van Aelst, P. (2020). Resilience to online disinformation: A framework for cross-national comparative research. *The International Journal of Press/Politics*, 25(3), 493–516.

Kalogeropoulos, A., Fletcher, R., & Kleis Nielsen, R. (2026). Inequalities in offline and online news media environments across six countries: The role of social class and interest in news. *Digital Journalism*. Advance online publication. <https://doi.org/10.1080/21670811.2025.2604740>

Kalogeropoulos, A., Suiter, J., Udris, L., & Eisenegger, M. (2019). News media trust and news consumption: Factors related to trust in news in 35 countries. *International Journal of Communication*, 13, 3672–3693.

Kubin, E., & von Sikorski, C. (2021). The role of (social) media in political polarization: A systematic review. *Annals of the International Communication Association*, 45(3), 188–206.

Lee, S., Gil de Zúñiga, H., & Munger, K. (2023). Antecedents and consequences of fake news exposure: A two-panel study on how news use and different indicators of fake news exposure affect media trust. *Human Communication Research*, 49(4), 408–420.

Lee, T., Johnson, T. J., & Sturm Wilkerson, H. (2023). You can't handle the lies! Exploring the role of Gamson hypothesis in explaining third-person perceptions of being fooled by fake news and fake news sharing. *Mass Communication and Society*, 26(3), 414–437.

Lu, C., Hu, B., Bao, M. M., Wang, C., Bi, C., & Ju, X. D. (2024). Can media literacy intervention improve fake news credibility assessment? A meta-analysis. *Cyberpsychology, Behavior, and Social Networking*, 27(4), 240–252.

Lyons, B., Mérola, V., Reifler, J., & Stoeckel, F. (2020). How politics shape views toward fact-checking: Evidence from six European countries. *The International Journal of Press/Politics*, 25(3), 469–492.

Mahl, D., Schäfer, M. S., & Zeng, J. (2023). Conspiracy theories in online environments: An interdisciplinary literature review and agenda for future research. *New Media & Society*, 25(7), 1781–1801.

McMahon, L., Kleinman, Z., & Subramanian, C. (2025, January 7). Facebook and Instagram get rid of fact checkers. *BBC News*. <https://www.bbc.com/news/articles/cly74mpy8klo>

Mihailidis, P. (2022). Media literacy. In G. A. Borchard (Ed.), *The Sage encyclopedia of journalism* (Vol. 4, pp. 999–1003). Sage.

Moore, R. C., Dahlke, R., & Hancock, J. T. (2023). Exposure to untrustworthy websites in the 2020 US election. *Nature Human Behaviour*, 7, 1096–1105.

National Institute of Statistics and Economic Studies. (2018). *Demographic balance sheet*. <https://www.insee.fr/en/statistiques/2382609?sommaire=2382613>

Newman, N., Fletcher, R., Robertson, C. T., Arguedas, A. R., & Nielsen, R. K. (2024). *Digital news report 2024*. Reuters Institute for the Study of Journalism. <https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2024>

Neyazi, T. A., Yi Kai Ng, A., Kuru, O., & Muhtadi, B. (2022). Who gets exposed to political misinformation in a hybrid media environment? The case of the 2019 Indonesian election. *Social Media + Society*, 8(3). <https://doi.org/10.1177/20563051221122792>

Ofcom. (2023). *Just one in six young people flag harmful content online*. <https://www.ofcom.org.uk/online-safety/illegal-and-harmful-content/one-in-six-young-people-flag-harmful-content-online>

Ofcom. (2024). *Online nation 2024*. <https://www.ofcom.org.uk/media-use-and-attitudes/online-habits/online-nation>

Office for National Statistics. (2016). *Population estimates for the UK, England and Wales, Scotland and Northern Ireland: mid-2016*. <https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/mid2016>

Park, C. S. (2024). Why people rely on fact-checkers? Testing theses of “perceived severity of fake news” and “disappointment in news media.” *Journalism Studies*, 25(1), 1–18.

Robertson, C. T., Mourão, R. R., & Thorson, E. (2020). Who uses fact-checking sites? The impact of demographics, political antecedents, and media use on fact-checking site awareness, attitudes, and behavior. *The International Journal of Press/Politics*, 25(2), 217–237.

Statistics Canada. (2016). *2016 census of population—Age and sex* [Data set]. <https://www12.statcan.gc.ca/datasets/Index-eng.cfm?Temporal=2016&Theme=115&VNAMEE=&GA=-1&S=0>

Tomkova, J. (2020). Digital social resilience: Navigating in the new normal. In B. D. Trump, K. Hossain, & I. Linkov (Eds.), *Cybersecurity and resilience in the Arctic* (pp. 413–426). IOS Press.

US Census. (2019). *American community survey: Demographic and housing estimates* [Data set]. <https://data.census.gov/cedsci/table?d=ACS%201-Year%20Estimates%20Data%20Profiles&tid=ACSDP1Y2019.DP05&hidePreview=true>

Van Aelst, P., Toth, F., Castro, L., Štětka, V., Vreese, C. D., Aalberg, T., Cardenal, A. S., Corbu, N., Esser F., Hopmann, D. N., Koc-Michalska, K., Matthes, J., Schemer, C., Sheaffer, T., Splendore, S., Stanyer, J., Stepinska, A., Stromback, J., & Theocharis, Y. (2021). Does a crisis change news habits? A comparative study of the effects of Covid-19 on news media use in 17 European countries. *Digital Journalism*, 9(9), 1208–1238.

Walter, N., Cohen, J., Holbert, R. L., & Morag, Y. (2020). Fact-checking: A meta-analysis of what works and for whom. *Political Communication*, 37(3), 350–375.

About the Author

Shelley Boulianne (PhD) is the R. Klein Research Chair (full professor rank) in Communication Studies at Mount Royal University (Calgary, Canada). She is currently the North American editor at *Information, Communication & Society* and an associate editor at *Social Science Computer Review*. She has held professor positions at the University of Southampton, UK; Catholic University of Lille, France; and MacEwan University, Canada. She was a visiting fellow at the Weizenbaum Institute for the Networked Society (Germany) and the Digital Democracy Center at the University of Southern Denmark. Her research examines the global dynamics of digital media use for citizen engagement in civic and political life.