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Abstract

This meta-analysis summarizes evidence on how readers perceive the credibility, quality, and readability of automated
news in comparison to human-written news. Overall, the results, which are based on experimental and descriptive evi-
dence from 12 studies with a total of 4,473 participants, showed no difference in readers’ perceptions of credibility, a
small advantage for human-written news in terms of quality, and a huge advantage for human-written news with respect
to readability. Experimental comparisons further suggest that participants provided higher ratings for credibility, quality,
and readability simply when they were told that they were reading a human-written article. These findings may lead news
organizations to refrain from disclosing that a story was automatically generated, and thus underscore ethical challenges

that arise from automated journalism.
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1. Introduction

Automated journalism, sometimes referred to as al-
gorithmic journalism (Doérr, 2016) or robot journalism
(Clerwall, 2014), alludes to the method by which algo-
rithms are used to automatically generate news stories
from structured, machine-readable data (Graefe, 2016).

The idea of news automation is not new. Half a cen-
tury ago, Glahn (1970) described a process for automat-
ically generating, what he called, “computer-produced
worded weather forecasts.” Basically, his idea was to
create pre-written statements that describe different
weather conditions, each of which corresponds to a par-
ticular output of a weather forecasting model (e.g., the
combination of wind speed, precipitation, and temper-
ature). This process is similar to today’s template-based
solutions offered by software providers in which a set of

predefined rules are used to determine which prewritten
statements are selected to create a story (Graefe, 2016).

Another domain that uses automated text genera-
tion is the financial news. In 2014, when the Associated
Press gained much public attention for the decision
to automate earnings reports (White, 2015), Thomson
Financial (today part of Thomson Reuters) had already
been automating such stories for nearly a decade (van
Duyn, 2006).

It is no coincidence that weather and finance were
the first applications to utilize news automation. In both
domains, structured data, a requirement for news au-
tomation (Graefe, 2016), are available. Furthermore, data
quality is high for these applications. Weather data are
measured through sensors with relatively low measure-
ment error. Likewise, the accuracy of company earnings
or stock prices is critical for consumers of financial data.
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What is new is the increasing abundance of struc-
tured and machine-readable data in many other do-
mains. Governments are launching open data initiatives,
sensors are constantly tracking environmental or health
data, and users are leaving traces with virtually anything
they do online. Such data can be used to generate auto-
mated news stories and thus serve as one of the tech-
nology’s major drivers. Another important driver is eco-
nomic pressure: News organizations need to save costs,
increase news quantity (e.g., covering niche topics), and
reach new target audiences (Graefe, 2016).

Promises of automation in increasing efficiency are
manifold. As outlined by Graefe (2016), automating rou-
tine tasks has the potential to save resources and thus
leave more time for journalists to do more important
work, such as fact-checking or investigative reporting.
Furthermore, automation can speed up news production
and essentially enable publication as soon as the under-
lying data become available. Finally, algorithms tend to
make fewer errors than human journalists and can per-
sonalize stories towards readers individual needs, and if
necessary, in multiple languages.

Nevertheless, Dorr (2016) found news automation to
be in an early market expansion phase at best. This sit-
uation does not seem to have changed much over the
past four years. Providers of automated text generation
still list few media organizations as their clients, although
this may have to do with reasons of commercial confi-
dentiality. That said, it is difficult to find regular text au-
tomation in high-profile publications, apart from the reg-
ularly cited one-off or experimental projects such as the
Heliograf (The Washington Post) or ReporterMate (the
Australian edition of The Guardian). Other major pub-
lications such as The New York Times stated that they
are not planning to automatically generate news, de-
spite having experimented with automation technology
to personalize newsletters or moderate readers’ com-
ments (Peiser, 2019).

One reason for why news organizations refrain from
using the technology, despite its economic potential,
may be concerns that their readers would disapprove
of automated news. According to the Modality—Agency—
Interactivity—Navigability model (Sundar, 2008), read-
ers may have a conflicting perception of automatically
generated news. On the one hand, they may prefer
human-written articles because they regard journalists
as subject-matter experts (authority heuristic), or be-
cause they feel that they are communicating with a hu-
man rather than a machine (social presence heuristic).
On the other hand, the machine heuristic suggests that
readers regard automated news as free of ideological
bias and thus more objective.

To answer such questions, researchers in different
countries have conducted experimental studies to ana-
lyze how readers perceive automated news in compari-
son to human-written news. While sharing the common
goal to better understand readers’ perceptions of auto-
mated news, these studies often differed in their design.

For example, some studies showed readers the same text
and manipulated the byline as either written by a hu-
man or by an algorithm, whereas others revealed the
true source of the articles. Yet another group of stud-
ies asked participants to rate either a human-written or
an automated text, without revealing any information
about who wrote the article.

The present meta-analysis summarizes available evi-
dence onreaders’ perception of automated news to date,
drawing on 11 articles, published in peer-reviewed jour-
nals between 2017 and 2020. Our goal is to give readers
quick and easy access to prior knowledge. We provide
an overview for which countries, domains, and topics
evidence is available, which designs have been used to
study the problem as well as how researchers recruited
study participants. More importantly, we provide effect
sizes aggregated across studies, while distinguishing be-
tween descriptive and experimental evidence as well as
between effects that can be attributed to the article
source (i.e., the author) and the message itself.

2. Method
2.1. Article Search

We included only studies published in scientific peer-
reviewed journals in the English language. Studies had
to provide experimental evidence on readers’ percep-
tions of human-written news in comparison to auto-
mated news with respect to credibility, readability, and
expertise. These are three of the four constructs that
Sundar (1999) identified as central when people evaluate
news content (the fourth one, representativeness, was
omitted as it applies to news sections rather than sin-
gle articles).

Our Google Scholar search for [(‘automated journal-
ism’ OR ‘robot journalism’) AND experiment AND per-
ception] in October 2019 vyielded 211 articles. After
reading the title and abstract of each article, 34 arti-
cles were identified as potentially relevant and were
thus read in full length by at least one of the au-
thors. The articles by Jia (2020) and Tandoc, Yao, and
Wu (2020) were added later. A total of 11 articles
matched the inclusion criteria outlined above. Table 1
lists the 11 articles included in our meta-analysis. Three
articles were published in Digital Journalism, and two
articles each in Journalism and Computers in Human
Behavior. The remaining four articles were published in
four different journals, namely International Journal of
Communication, Journalism Practice, Journalism & Mass
Communication Quarterly, and IEEE Access.

2.2. Studies

We only included studies with a particular study design
in our meta-analysis. These studies presented recipients
with a short news story, in which either the author (jour-
nalist or algorithm), the attributed author (journalist or
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algorithm), or both were experimentally manipulated.
Recipients would then rate the article they had just read
in terms of (at least one of the dimensions) credibility,
quality, and readability.

Given that we were interested in readers’ percep-
tions of human-written vs. automated news, we ex-
cluded experiments that used journalists as recipients
(e.g., Jung, Song, Kim, Im, & Oh, 2017, Experiment 2) or
analyzed hybrids of human-written and automated news
(e.g., Waddell, 2019a). We also excluded studies that did
not report effect sizes (e.g., Clerwall, 2014) or used a
different experimental setup (e.g., Haim & Graefe, 2017,
Experiment 2).

We ended up with 12 studies included in the 11 arti-
cles (cf. Table 1).

2.3. Coding

For each experimental study, one author coded study ar-
tifacts that related to the study participants, the stimulus
material, the experimental design, and the study results
(cf. Table 1). If the coder was uncertain regarding a par-
ticular coding, the issue was resolved by discussion with
the second author. The coding sheet is available at the
Harvard Dataverse (Graefe, 2020).

2.3.1. Participants

We coded the number of participants, age and gen-
der distribution, the country/region participants came
from as well as how participants were recruited. Across
the 12 experiments, a total of 4,473 people partici-
pated, of which 50% were female. The average age
was 36 years. Participants were from the USA (all of
which were recruited through Amazon Mechanical Turk),
Germany (recruited through the Sosci Panel adminis-
tered by the German Communication Association), South
Korea, China, Singapore, and other European countries.

2.3.2. Stimulus

We coded the domain of the news article, the article
topic, as well as the article language. Sports news were
most often used (eight studies), followed by financial (six)
and political (four) news. Two studies focused on break-
ing news (earthquake alerts), and one study each used
texts within the domains of entertainment and other
news. Six experiments used articled written in English,
two each in German and Korean, and one each in Finnish
and Chinese.

2.3.3. Study Design

Table 1 shows the design for each study, particularly re-
garding our key variables of interest, namely who the ac-
tual author of the article was, and who was declared as
the author (author attribution). In addition, Table 1 also
lists additional experimental manipulations if available.

2.3.4. Outcome Variables

Across the 12 experiments, credibility was measured
most often (nine times), followed by quality (eight times)
and readability (five times). While the specific opera-
tionalization of the three constructs somewhat varied
across studies, the measures used intend to capture the
same basic constructs. Also, 8 of the 12 experiments re-
ported effect sizes on a 5-point scale, three studies used
a 7-point scale, and one study used a 10-point scale. For
each outcome variable, we coded mean ratings and stan-
dard errors and/or standard deviations.

2.3.5. Effect Size Calculation

For each experimental comparison of human-written
and automated news, we calculated Cohen’s d, the stan-
dardized mean difference between the two groups, as:

— MHW _MA

sD pooled

where M, refers to participants’ mean rating for per-
ceptions of human-written news and M, refers to mean
ratings of automated news (Cohen, 1988). Hence, pos-
itive values for d imply that the human-written were
rated better than automated news, and vice versa. Meta-
analysis effect sizes were calculated as weighted (by the
inverse of the variance) averages across the d values for
the available studies. When referring to magnitudes of
effects sizes, we adopted the descriptors suggested by
Cohen (1988) and refined by Sawilowsky (2009), namely,
zero effect (d = 0), very small effect (0 < d < 0.2), small
effect (0.2 < d <0.5), medium effect (0.5 <d < 0.8), large
effect (0.8 < d < 1.2) very large effect (1.2 < d < 2.0), and
huge effect (d > 2.0).

2.4. Types of Evidence

We distinguish between experimental and descriptive ev-
idence in our analysis.

2.4.1. Experimental Evidence

Experimental evidence aims to establish causal effects
by isolating the effects of the independent variable (i.e.,
the author or the attribution) through experimental
manipulation.

Studies that aim to isolate the effect of the article
source would show all recipients the same text (either
written by a human or an algorithm). However, for some
recipients, the text would be declared as written by a hu-
man, whereas for other recipients, that very same text
would be declared as automatically generated.

Studies that aim to analyze the effect of the content
(i.e., the message) would present recipients with either
a human-written or an automated text but would not re-
veal the source (i.e., the texts had no byline).
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Table 1. Experiments included in the meta-analysis.

Experimental design Outcome
Participants Stimulus (J = journalist, A = algorithm, U = unknown) variables
g v
Q —
IS > z 3
£ o = = &
nw 8 8 8 £ T z 2 %
9 T E S 3% © 5 = 5 5
% Avg. 8_'_52*5935 Author U U J A A Ag T & o
Citation Exp. N female age Country Recruited Language @ & i© w o O Topic(s) Attribution J A A J A u o 0 x =z
Wu (2019) 370 50 NA USA Commercial online  English X X X Not specified 2 (attribution) X X X 10
panel (Amazon 2 (author) X
Mechanical Turk) 3 (topic)
Jia (2020) 2 308 67 24  China Social media Chinese X X X Soccer, Basketball, 2 (author) X X X X X 5
snowball sampling Travel, Company 4 (topic)
(Wechat, Weibo, reports,
and Zhihu) Conferences
Haim and 1 313 61 36 Germany Non-commercial German X X X Soccer, Stocks, 2 (author) X X X X X 5
Graefe online panel Celebrities 3 (topic)
(2017) (SoSci Panel)
Zheng, 246 53 40 USA (154) Commercial online English X X X Basketball, Stocks, 2 (attribution) X X X X X 7
Zhong, and & China panel (Amazon Earthquake 2 (media outlet) x
Yang (2018) (91) Mechanical Turk) 2 (culture) x
3 (topic)
Graefe, 986 53 38 Germany Non-commercial German X X Soccer, Stocks 2 (author) x X X X X X X 5
Haim, online panel 2 (attribution) X
Haarmann, (SoSci Panel) 2 (topic)
and Brosius
(2018)
Wolker and 300 60 28 Europe Social media English X X Basketball, single factor X X 5
Powell snowball sampling Business (author) with
(2018) (Facebook, Twitter, (Forbes) 4 groups
and LinkedIn)
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Table 1. (Cont.) Experiments included in the meta-analysis.

Experimental design Outcome
Participants Stimulus (J = journalist, A = algorithm, U = unknown) variables
€ v
[J] -
€ > Z O
£ w £ = o
g 8883 o 3 28 £
%  Avg. g%gggg Author ulJJAAJAS S S 2
#  Citation Exp. N female age Country Recruited Language «» o i w o O Topic(s) Attribution AJ] AJAUUOGOC O ex =z
7a Jungetal. 1 400 50 39 South Commercial online Korean (?) X Baseball 2 (author) X X X X X X 5
(2017) Korea panel (Hankuk 2 (attribution)
Research)
7b Pre-test 201 49 40 South Commercial online Korean (?) X Baseball single factor X X X 5
Korea panel (Hankuk (author) with
Research) two groups
8  Waddell 129 51 40 USA Commercial online English X Election single factor X X X 7
(2018) panel (Amazon polling (attribution)
Mechanical Turk) with 2 groups
9  Waddell 1 612 47 38 USA Commercial online English X Khan Conflict, 3 (attribution) X X X 7
(2019b) panel (Amazon Paris Accord 2 (media outlet) X
Mechanical Turk) 2 (topic)
10 Melinetal. 152 NA NA  Finland Commercial online Finnish X Election single factor X X X X X 5
(2018) panel results (author) with
4 groups
11 Tandoc 420 41 38 Singapore Commercial online English X Earthquake 3 (attribution) X X X 5
et al. (2020) panel 2 (objectivity)
Total 4,473 50 32 36 8 4 6 1 2 1 4 5 2 2 5 4 4 9 8 5
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2.4.2. Descriptive Evidence

Comparisons that provided descriptive evidence showed
recipients news stories that were either written by a hu-
man or automatically generated, and truthfully declared
the source. That is, human-written news would correctly
be declared as written by a journalist, and automated
news would correctly be labelled as generated by an al-
gorithm. Then, the researchers would ask participants to
rate these texts.

These comparisons do not allow for drawing causal
inferences on the effects of the source or the message.
However, for perceptions of credibility, researchers often
use different scales (i.e., source credibility and message
credibility), which were specifically designed to separate
the effects. In contrast, no scales are available to distin-
guish the effects of the message and the source on per-
ceived quality or readability. We were thus unable to sep-
arate the effects of source and message in these cases.

3. Findings
3.1. Main Effects

Figure 1 shows the main effects for each of the three
constructs across all available comparisons, not differ-
entiating between effects of the source and the mes-
sage. Overall, there was no difference in how readers per-
ceived the credibility of human-written and automated
news (d = 0.0; SE = 0.02). Although human-written
news were rated somewhat better than automated news
with respect to quality, differences were small (d = 0.5;

6.0
5.0
4.0
)
\V)
o]
2 30
o
L
[}
N
©w 20
-
(8]
(9]
=
w
1.0
0.5
0.3 h
I
0.0 I
0.0
I
-0.5
-1.0
Credibility
Overall

Quality

Experimental evidence

SE = 0.03). In terms of readability, the results showed
a huge effect in that readers clearly preferred human-
written over automated news (d = 2.8; SE = 0.04).

Interestingly, however, the direction of the effects for
credibility and quality differed depending on the type
of evidence. For both credibility (d = 0.3; SE = 0.03)
and quality (d = 0.8; SE = 0.03), experimental evidence
favored human-written over automated news. In com-
parison, descriptive studies showed the opposite ef-
fect: Automated news were favored over human-written
news for both credibility (d = —0.5; SE = 0.04) and quality
(d = —0.6; SE = 0.06).

3.2. Credibility

Figure 2 distinguishes between comparisons that pro-
vide evidence on the effects of the source and the effects
of the message.

3.2.1. Source Credibility

One factor that may affect readers’ perception of news
is the source or, more specifically, the author. Overall,
the results show a small difference between readers’ per-
ceptions of source credibility: human-written news were
rated somewhat higher than automated news (d = 0.3;
SE = 0.04). That said, the direction of effects differed
again depending on the type of evidence. While exper-
imental evidence showed a medium-sized effect in favor
of human-written news (d = 0.5; SE = 0.04), descriptive
evidence revealed a small effect in favor of automated
news (d = —0.3; SE = 0.08).

5.1

2.8

0.8

Readability

Descriptive evidence

Figure 1. Main effects (standardized mean difference) for credibility, quality, and readability; by type of evidence. Note:

Error bars show 95% confidence intervals.
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Figure 2. Standardized mean difference for credibility by type of evidence and effect. Note: Error bars show 95% confidence

intervals.

3.2.2. Message Credibility

With respect to message credibility, automated news
were rated somewhat more favorably across all com-
parisons (d = —0.3; SE = 0.03). Yet, again, the effect
was solely carried by descriptive evidence (d = -0.6;
SE = 0.05). Experimental evidence found no difference
(d =0.0; SE = 0.04).

3.3. Quality

Figure 3 distinguishes between experimental compar-
isons that provide evidence on the effects of the source
and the effects of the message as well as descriptive evi-
dence that does not allow for differentiating between ef-
fects of source and message on recipients’ perceptions
of quality.

Experimental evidence suggests that the article
source has a small effect on perceptions of quality in that
human-written news are rated somewhat better than au-
tomated news (d = 0.3; SE = 0.04). Experimental compar-
isons that provided evidence on the effects of the mes-
sage found a very large effect in favor of human-written
news (d = 1.6; SE = 0.05). Descriptive evidence, which
does not allow for distinguishing between effects of the
source and the message, found a medium-sized advan-
tage for automated news with respect to perceived qual-
ity (d = —0.6; SE = 0.06).

3.4. Readability

Figure 4 distinguishes between experimental compar-
isons that provide evidence on the effects of the
source and the message as well as descriptive evi-
dence that does not allow for differentiating between ef-
fects of source and message on recipients’ perceptions
of readability.

Regardless of the type of evidence, the results
showed a clear advantage for human-written articles.
For experimental evidence on the effects of the source
(d =1.8; SE = 0.05) and the message (d = 3.8; SE = 0.07),
effect sizes were very large and huge, respectively.
Descriptive evidence on the combined effects of source
and message showed a huge effect (d = 5.1; SE = 0.13).

4. Discussion

This meta-analysis aggregated available empirical evi-
dence on readers’ perception of the credibility, qual-
ity, and readability of automated news. Overall, the re-
sults showed zero difference in perceived credibility of
human-written and automated news, a small advantage
for human-written news with respect to perceived qual-
ity, and a huge advantage for human-written news with
respect to readability.

One finding that stood out was the fact that the
direction of effects differed depending on the type of
evidence. Experimental evidence on the effects of the
source found advantages for human-written news with
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Figure 3. Standardized mean difference for quality by type of evidence and effect. Note: Error bars show 95% confidence
intervals.

respect to quality (small effect), credibility (medium- authority heuristic and the social presence heuristic,
sized), and readability (very large). In other words, re- while contradicting the machine heuristic (Sundar, 2008).
gardless of the actual source, participants assigned Given these findings, news organizations may worry that
higher ratings simply if they thought that they read their readers would disapprove of automated news and
a human-written article. The results thus support the therefore refrain from disclosing that a story was auto-
5.1
5.0
4.0 3.8
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Source effects Message effects Source & message

(not distinguishable)
Experimental evidence Descriptive evidence

Figure 4. Standardized mean difference for readability by type of evidence and effect. Note: Error bars show 95% confi-
dence intervals.
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matically generated (e.g., by not providing a byline). This
underscores the ethical challenges that arise from auto-
mated journalism (Dérr & Hollnbuchner, 2017).

Experimental evidence further showed advantages
for human-written news with respect to the effect of
the message (i.e., the article content). If participants did
not know what they were reading, they assigned higher
ratings to human-written news compared to automated
news with respect to quality (very large effect) and read-
ability (huge effect). There was, however, no effect for
credibility. Obviously, these results depend entirely on
the actual articles used in these comparisons. We thus
refrain from deriving any conclusions or practical impli-
cations from these results and expect that the human
written articles in these particular comparisons may have
simply been better than the automated counterparts.
The extent to which these articles are representative
of the relative quality of automated and human-written
news at the time is unclear.

In contrast, descriptive evidence showed opposite re-
sults with respect to how article source and message
affect perceptions of credibility and quality. That is, au-
tomated news were perceived as more credible and of
higher quality than the human-written counterparts in
studies that asked recipients to evaluate articles whose
source was truthfully declared. Given that these studies
do not allow for making causal inferences, it is difficult to
draw practical implications. In particular, any differences
in effect sizes could simply be due to differences in the
actual quality of the articles themselves.

Our analysis thus demonstrates the importance of
distinguishing between the type of evidence (descrip-
tive vs. experimental) as well as the origin of the ef-
fect (source and message). Otherwise, interesting find-
ings, such as the positive effect of human authors on
people’s perceptions may get lost in the aggregate. That
said, effects of the source with respect to both per-
ceived credibility and quality were small. News organi-
zations may not need to worry too much that readers
could perceive automated news as less credible, or more
generally as being of lower quality, than human-written
news—assuming of course that the articles’ actual qual-
ity is similar.

Differences with respect to readability, however,
were huge. On the one hand, one could assume that
poor readability is a critical barrier for readers’ willing-
ness to consume automated news. On the other hand, it
should be noted that automation is most useful for rou-
tine and repetitive tasks, for which one needs to write a
large number of stories (e.g., weather reports, corporate
earnings stories). Such routine writing is often little more
than a simple recitation of facts that neither requires
flowery narration nor storytelling. In fact, in certain do-
mains such as financial news, sophisticated writing may
even be harmful, as consumers generally want the hard
facts as quickly and clearly as possible. Another poten-
tial benefit of automation is the possibility to cover top-
ics for very small target groups, for which previously no

news were available (e.g., lower league games for niche
sports, earthquake alerts, fine dust monitoring, etc.). For
such topics, readers may be happy if they get any news at
all. As a result, they may not be too concerned with read-
ability, especially with how the construct is commonly
measured (e.g., with items such as ‘entertaining,” ‘inter-
esting,” ‘vivid,” or ‘well written’) in the literature. Future
research should analyze perceptions of readers that rep-
resent the actual target group (i.e., people who would
actually consume automated news).

Needless to say, our results provide merely a snap-
shot of the current state of news automation, drawing
on evidence from 11 articles published between 2017
and 2020. Readers’ perceptions may change over time,
and they may change fast. Assuming that automated
news becomes more common, readers would get more
accustomed to such content, which could ultimately af-
fect their perceptions. Also, the technology for creating
automated news, as well as the availability of data, is
likely to further improve over time, which we expect to
positively affect both the quality and readability of au-
tomated news. Advances in statistical analysis, in combi-
nation with more data, should make it possible to add
more context (e.g., adding weather data to exit polling
texts) and analytical depth (e.g., by analyzing historical
data, making predictions, etc.), which should improve
the perceived quality of such texts. Similarly, we would
expect natural language generation to further improve,
with positive effects on perceived readability. Future re-
search should continue monitoring readers’ perception
of automated news, especially if and how improvements
in the objective quality of the texts affect their per-
ceived quality.

The latter relationship has generally been overlooked
in research to date. Available studies have merely ana-
lyzed if, and to what extent, readers’ perceptions of au-
tomated and human-written news differ. Yet, we do not
know which factors drive these perceptions. What is it
that makes an article perceived as more or less credible
or readable? Such information would be valuable for de-
velopers of automated news to improve the (perceived)
quality of the texts.
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