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Abstract
The question of what is important whenwe evaluatemovies is crucial for understanding how lay audiences experience and
evaluate entertainment products such as films. In line with this, subjectivemovie evaluation criteria (SMEC) have been con-
ceptualized asmental representations of important attitudes toward specific film features. Based on exploratory and confir-
matory factor analyses of self-report data fromonline surveys, previous research has found and validated eight dimensions.
Given the large-scale evaluative information that is available in online users’ comments in movie databases, it seems likely
that what online users write about movies may enrich our knowledge about SMEC. As a first fully exploratory attempt,
drawing on an open-source dataset including movie reviews from IMDb, we estimated a correlated topic model to explore
the underlying topics of those reviews. In 35,136 online movie reviews, the most prevalent topics tapped into three major
categories—Hedonism, Actors’ Performance, and Narrative—and indicated what reviewers mostly wrote about. Although
a qualitative analysis of the reviews revealed that users mention certain SMEC, results of the topic model covered only
two SMEC: Story Innovation and Light-heartedness. Implications for SMEC and entertainment research are discussed.
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1. Introduction

When Louis Leon Thurstone (1930) developed A Scale
for Measuring Attitude Toward the Movies in the con-
text of the Payne Fund Studies (1929–1932), it was one
of the first attempts to measure interindividually differ-
ent attitudes in movie effects research. Back then, so-
cial scientists saw movies as a social problem, in partic-
ular, for child and youth development (cf. Wartella &
Reeves, 1985). Nowadays, the entertainment and film in-
dustry are booming (Hennig-Thurau & Houston, 2019).
More than ever before, communication scholars dedi-

cate themselves to learning about how watching movies
influences entertainment experiences, what (positive)
consequences follow, or how predispositions towards
entertainment media shape movie selection and use
(Raney & Bryant, 2020). Here, subjective movie evalu-
ation criteria (SMEC) play a crucial role in evaluating
movies before, during, and after exposure (Schneider,
Welzenbach-Vogel, Gleich, & Bartsch, in press) and can
help to predict specific individual movie evaluations
(Schneider, 2012a). SMEC are conceptualized as “men-
tal representations of important attitudes towards spe-
cific film features” (Schneider, 2017, p. 71). To mea-
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sure SMEC and address the question of what is impor-
tant when viewers evaluate a movie, the SMEC scales
have been developed and validated (Schneider, 2012a,
2017). This, however, has been largely based on factor-
analytical examination of self-report data. As subjective
criteria may best predict subjective choices, processing,
and effects, such amethodological approachmakes good
sense. Nevertheless, support for the construct validity of
SMEC could be strengthened if distinct methodological
approaches arrive at similar conclusions from different
angles. Moreover, it might be interesting to learn from
viewers’ written evaluative responses to movies in a
more natural environment, aside from a scientific setting
(e.g., an online survey). Such an approach may be more
unobtrusive and less prone to issues with mental acces-
sibility or social desirability. The tremendous opportuni-
ties that movie users have to express themselves online
coupled with today’s computing power provide oppor-
tunities for the computational analyses of online users’
movie reviewswhich could help further examine the con-
struct validity of SMEC and explore the movie write-ups
of lay audiences. Thus, in the present article, we follow
an exploratory approach as we are interested in what on-
line movie reviewers write about, and if such online re-
views provide insight into underlying SMEC, which they
might have applied to evaluate a movie.

2. Theoretical Background and State of Research

2.1. A Brief Overview of Subjective Movie Evaluation
Criteria

Whereas Thurstone (1930, see beginning of Section 1)
was interested in attitudes towards movies in general,
SMEC aim at examining the standards lay audiences
use to assess movie features. Although several criteria
had been suggested, most of them were not validated
or applied to TV shows or specific target groups only
(Schneider, 2017). To address these shortcomings, pre-
vious research developed and validated scales for mea-
suring and examining the structure of SMEC (for de-
tails see Schneider, 2012a, 2017). The procedure com-
prised open-ended data from an online-survey, studies
including a modified structure formation technique, fo-
cus groups, and quantitative content analysis of criteria
categorization, pretesting and revising of the item pool,
exploratory and confirmatory factor analyses, and latent
state-trait analyses. Results provided evidence for the
content, structural, and substantive validity as well as for
the reliability of the SMEC scales. Moreover, the nomo-
logical network of SMEC was explored (external valid-
ity by examining correlations with related constructs like
film genre preferences and personality traits). The eight
dimensions that emerged during this process and have
been validated are as follows: Story Verisimilitude (SV),
which reflects correspondence to (contemporary) real-
ity (e.g., Gunter, 1997; Valkenburg & Janssen, 1999);
Story Innovation (SI), which reflects the originality of

the story (e.g., Greenberg & Busselle, 1996); Cinema-
tography (CI), which reflects cinematic techniques (e.g.,
Gunter, 1997); Special Effects (FX), which also reflects
cinematic techniques but focuses more on the techni-
cal aspects (e.g., Neelamegham & Jain, 1999; Rössler,
1997); Recommendation (RE), which reflects external re-
sources for film evaluation (e.g., Neelamegham & Jain,
1999); Innocuousness (IN), which reflects a lack of po-
tentially unpleasant characteristics (e.g., Nikken & van
der Voort, 1997; Valkenburg & Janssen, 1999); Light-
heartedness (LH), which reflects amusement and es-
capism (e.g., Greenberg & Busselle, 1996; Valkenburg &
Janssen, 1999); Cognitive Stimulation (CS), which reflects
the viewer’s cognitive processes such as cogitation or
learning (e.g., Himmelweit, Swift, & Jaeger, 1980; Nikken
& van der Voort, 1997). Whereas the first four dimen-
sions (SV, SI, CI, FX) summarize film-inherent elements,
RE refers to film-external features, and the final three di-
mensions concern anticipated effects of use (IN, LH, CS).

In addition, some studies investigated the predic-
tive power of LH for the evaluation of a comedy show
(My Name is Earl; Burtzlaff, Schneider, & Bacherle, in
press, Study 1), as well as the predictive power of IN, LH,
and CS for the appreciation and enjoyment of movies in
general as well as for specific genres (Schneider, 2012b).
This makes the notion of SMEC particularly interesting
for broader entertainment research. For instance, tradi-
tionally, film-specific evaluations have been mainly ex-
amined in light of entertainment experiences like enjoy-
ment and pleasure (e.g., Vorderer, Klimmt, & Ritterfeld,
2004). They correspond to an evaluation criterion such
as LH:Whereas whenmovie viewers enjoy amovie, their
overall judgment about a movie can be more positive
when they rate LH as highly important. However, recent
advances go beyond hedonic consumption and advocate
a more nuanced view of audience responses, reflect-
ing a sense of meaning and growth, self-transcendence,
or aesthetic and artistic quality (e.g., Oliver & Bartsch,
2010; Oliver & Raney, 2011; Oliver et al., 2018; Vorderer
& Reinecke, 2015; Wirth, Hofer, & Schramm, 2012).
Similarly, this gain in complexity is also reflected in vari-
ous evaluation criteria that supplement criteria that refer
to effects of use (e.g., CS) with criteria that focus more
on the features of the movie (e.g., CI). SMEC might be
better and more fine-grained predictors of film-specific
evaluations than genre preferences and also empha-
size content-related aspects (compared, e.g., to a user-
centred approach; e.g., Swanson, 1987; Wolling, 2009).
Thus, in sum, preliminary findings underscore the use-
fulness of SMEC for current entertainment research on
movies and may help to understand the role of stable
criteria in explaining audience responses before, during,
and after movie exposure.

2.2. Previous Research on Online Movie Reviews

Although online movie reviews have been extensively
researched in the last decades, this has been done al-
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most exclusively in the domain of marketing studies
(e.g., when investigating effects of online word of mouth
on box-office success; e.g., Chintagunta, Gopinath, &
Venkataraman, 2010; Eliashberg, Jonker, Sawhney, &
Wierenga, 2000). Besides, more recently, online movie
databases such as the International Movie Database
(IMDb), Yahoo! Movies, or Douban have been among
platforms subjected to computational analyses (e.g.,
Bader, Mokryn, & Lanir, 2017; Simmons, Mukhopadhyay,
Conlon, & Yang, 2011; Yang, Yecies, & Zhong, 2020;
Zhuang, Jing, & Zhu, 2006). In the following paragraphs,
we give a brief overview of large-scale studies dealing
with online movie reviews. For a more comprehensive
summary, see Table S1 in the Supplementary Material.
Please note that Table S1 and some parts of the remain-
der of this article include technical language of compu-
tational science. We refer the interested reader to com-
prehensible and introductory texts for communication
scientists such as Günther and Quandt (2016) or Maier
et al. (2018).

2.2.1. Predicting Box-Office Success

Awide range ofmanagement/economics studies have at-
tempted to predict a movie’s box-office success through
statistical models, often including samples of online
movie reviews (e.g., Hu, Shiau, Shih, & Chen, 2018; Hur,
Kang, & Cho, 2016; Lee, Jung, & Park, 2017). Most of
these models incorporated the online movie review’s
sentiment as well as other factors, some of which are
also specific to reviews, such as the writing style, use of
certain words (bag of words approach), or the length of
review (Yu, Liu, Huang, & An, 2012). Other characteris-
tics of online movie reviews such as its rated helpfulness
(Lee & Choeh, 2018), the movie’s numeric ‘star’-rating
(Hur et al., 2016), or the genre of movie (Lee & Choeh,
2018) were also often used but referred not directly to
the online movie review’s content.

2.2.2. Predicting Sentiments

The second line of research, focusing on methodologi-
cal aspects of computational methods, attempted to es-
tablish, complement, or modify algorithms for the min-
ing of online movie reviews, especially for sentiment
analysis (e.g., Liu, Yu, An, & Huang, 2013; Parkhe &
Biswas, 2016; Yang et al., 2020). As online movie reviews
are relatively easy to scrape (e.g., from IMDb) and by
nature mostly positive or negative (and rarely neutral),
they provide good examples to develop and test classi-
fication algorithms. Most of these studies are situated
within the fields of computational linguistics and com-
puter science.

2.2.3. Other Computational Approaches

A few studies do not fit either of the previous categories
(e.g., Bader et al., 2017; Otterbacher, 2013; Simmons

et al., 2011; Yang et al., 2020). See Table S1 in the
Supplementary Material for more details.

Three studies are particularly interesting concerning
the aim of the present article. Drawing on emotion the-
ory, Bader et al. (2017) created emotional signatures of
movies and their genres based on emotions toward or
elicited by a film that were extracted from its online re-
views on IMDb. Their results imply that emotional eval-
uations also manifested themselves in online reviews
and can help to cluster entertainment-related concepts
such as movie genres. Moreover, as emotional and af-
fective states are also related to SMEC (e.g., LH and IN),
the appearance of words representing emotions in on-
line movie reviews may help detect those criteria. In
other words, it seems likely that SMEC that rely on af-
fective evaluations are reflected in movie reviews. An
‘emotional’ approach to movies is also common in en-
tertainment research (e.g., Bartsch, 2012; Soto-Sanfiel &
Vorderer, 2011). Whereas these findings concern crite-
ria as anticipated effects of viewing, two other studies
focused more on film-inherent features as criteria. For
instance, in an often-cited article, Zhuang et al. (2006)
mined feature–opinion pairs within online movie re-
views, based on a movie feature–opinion list. The fea-
ture part of this list contained names of movie-related
individuals such as directors or leading actors and fea-
ture words of six movie elements, which were not de-
rived from theory but were somewhat related to evalua-
tion criteria—for instance, visual effects (partially refers
to CI), FX, and screenplay (refers to SI). Thus, these find-
ings support the idea that it is not only users’ personal ex-
periences (e.g., emotions) which play a role in movie re-
views, but also movie-related features that are deemed
necessary to achieve artistic and aesthetic quality. Lastly,
using computer-aided content analysis, Simmons et al.
(2011) found that storyline—among four other movie
elements—was strongly related to the overall film grade.
However, a deeper analysis revealed that what they
called ‘storyline’ included statements about CI, action,
humour, and entertainment, and thus represented a
rather fuzzy concept. Disentangling what lies behind the
storyline may hint at effects of use and film-inherent fea-
tures as they are reflected by SMEC.

In sum, regarding entertainment theory and SMEC,
all previous perspectives on online movie reviews show
several weaknesses: First, although some studies refer
to features or criteria, those criteria are not based on
theoretical assumptions. Moreover, research has so far
heavily relied on lexical databases or dictionaries, which
implies that criteria are directly observable within the
online reviews. Given the theoretical assumption that
SMEC are latent constructs (Schneider, 2012a, 2017),
methodological approaches that take this assumption
into account could be more appropriate (e.g., Amplayo
& Song, 2017, combined a multi-level sentiment classifi-
cation with bi-term topic modeling).

To our best knowledge, on the one hand, no stud-
ies that computationally analyzed online movie reviews
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have yet done so against the background of concepts re-
lated to entertainment theory. On the other hand, par-
ticularly within the field of entertainment theory, com-
munication researchers have rarely used online review
platforms to address research problems, even though
the opportunities to assess digital traces of audience re-
actions seem easily available on a large scale and allow
conclusions to be drawn about personal characteristics
from online behaviour such as liking (Kosinski, Stillwell,
& Graepel, 2013). For instance, if entertainment expe-
riences are conceptualized as media effects (for recent
overviews, see Raney & Bryant, 2020; Raney, Oliver, &
Bartsch, 2020), responses to movie exposure and eval-
uative judgments of movies—both can be expressed as
written online reviews—may indicate underlying evalua-
tive factors (Schneider et al., in press).

2.3. The Present Research

Unlike previous studies that focused on predicting box-
office success or sentiments from online movie reviews,
we are interested in what online movie reviewers write
about and if those online reviews provide insight into
underlying SMEC, which the writers might have applied
to evaluate a movie. In doing so, we try to figure out
whether text mining of online movie reviews’ content
can support findings from self-report data and howanaly-
ses from suchmethodologically different approaches can
contribute to construct validity. Until now, we are not
aware of any similar attempt.

As the SMEC development has been a data-driven, in-
ductive process, we decided against a confirmatory ap-
proach in favour of an exploratory, inductive, and unsu-
pervised approach (i.e., topic modeling).

3. Method

Our sample is based on an open-source dataset including
movie reviews from IMDb and their positive or negative
sentiment classification (Maas et al., 2011). The dataset
consists of 25,000 positive and 25,000 negative movie
reviews. Additionally, 50,000 unlabeled reviews are pro-
vided. Only up to 30 reviews per movie are included in
order to avoid a high number of correlated reviews. After
downloading the data, we decided to focus on the posi-
tive and negative reviews only because these sentiments
might be a sign that users expressed their SMEC. All data
management, cleaning, and analysis was performed us-
ing R 3.5.3 (R Core Team, 2020) and RStudio 1.2.5033
(RStudio Team, 2019).

Before analysis, we opted for an extensive data pre-
processing as recommended in the literature (Maier
et al., 2018; Manning, Raghavan, & Schütze, 2008). First,
we excluded all duplicate reviews from the dataset.
Afterwards, we implemented common data preprocess-
ing steps to delete text that provided no relevant infor-
mation for automatic text analysis, such as cleaning of
HTML tags and links and deleting numbers and whites-

pace via the textclean package in R (Rinker, 2018). To im-
prove the quality of our dataset and to reduce the num-
ber of possible features, we deleted common stopwords
via a combination of different stopword-lists and imple-
mented lemmatization (Manning et al., 2008) via the
spacyr (library ldaR wrapper; Benoit & Matsuo, 2020).
Online movie reviews are of varying quality as users em-
ploy, for instance, internet slang as opposed to formal
writing. To enhance the quality of the data and reduce
internet slang, we automatically removed internet slang
via textclean package in R (Rinker, 2018) and, based on
part-of-speech tagging via spacyr, we selected only verbs,
nouns, adjectives, and adverbs for further analysis. We
deleted the most common words—‘movie’ and ‘film’—
because they are very general in our context but oc-
curred more than 60,000 times in the corpus and thus
three times more often than any other word. We im-
plemented term frequency–inverse document frequency
(tf–idf) weighting in order to determine how relevant a
word in a given document is—that is, how often a word
occurs in a document in relation to how often the word
occurs in other documents of the corpus (Manning et al.,
2008). In the following, we removed words that had a
low tf–idf score (tf–idf < 0.050) and, thus, were not im-
portant for our analysis.

For data analysis, we employed topic modeling, an
unsupervised machine learning approach to infer latent
topics from a large sample size (Maier et al., 2018). Given
the characteristics of our sample and theoretical assump-
tions (i.e., topics are likely to be correlated), we esti-
mated a Correlated Topic Model (CTM) based on the
movie reviews (Blei & Lafferty, 2009) using the topicmod-
els package in R (Grün & Hornik, 2011). To select the
number of topics, we estimated 21 topic models from
k = 10 to k = 70 via ldatuning 1.0.0 package (Murzintcev
& Chaney, 2020) and selected the 38-topic model as the
best fitting model to our data. Then, we estimated a set
of ten separate 38-topic CTMs with different initial pa-
rameters and selected from this set the best model re-
garding log-likelihood (Grün & Hornik, 2011) as our final
model. We selected the topic with the highest probabil-
ity per online movie review and with a minimum prob-
ability (gamma) of 0.02. The best fitting CTM included
38 topics for 41,434 online movie reviews. All scripts
for data cleaning and analysis can be accessed via OSF
(https://osf.io/pqnk6).

To allow for succinct presentation whilst ensuring
coverage of the most important topics in the dataset, we
focus on the most frequent topics in our sample with
at least 600 reviews per topic. For all topics discovered
in the dataset, please see the topic distribution and the
top words for all topics in OSF. Based on a qualitative as-
sessment of the top words of each topic, we organized
the remaining 14 topics (N = 35,136) in three broad cat-
egories (see Table 1). Furthermore, drawing on the ma-
terial (i.e., evaluation terms and criteria) used during the
development of the SMEC scales (Schneider, 2012a, see
Appendices A and B; Schneider, 2017, see item wording),
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Table 1. CTM (k= 38,max. 1 topic/review, probability≥ 0.02) with 14manually selected topicswith at least 600 reviews per
review merged into three thematically overlapping topic categories, sorted alphabetically and by aggregated frequencies
(N = 35,136).

k Label n Top-10 words

9 AP: Acting 1 7,320 role, act, guy, character, script, Hollywood, excellent, kill, family, write

1 AP: Acting 2 1,847 actor, episode, watch, woman, lot, script, star, hard, character, funny

15 AP: Acting 3 776 cast, kid, act, guy, stupid, comedy, life, actor, character, effect

13 HE: Comedy 1 3,054 life, comedy, love, kid, excellent, waste, dvd, series, plot, recommend

2 HE: Comedy 2 1,213 comedy, performance, write, script, bad, family, love, pretty, story, original

14 HE: Fun 1 7,166 laugh, performance, fun, book, bad, family, funny, kid, dvd, bit

35 HE: Fun 2 6,838 funny, family, episode, script, series, lot, character, laugh, story, people

25 HE: Fun 3 1,724 funny, hour, rent, horror, laugh, series, story, write, money, shoot

6 HE: Fun 4 1,225 laugh, funny, people, story, love, effect, lot, write, pretty, minute

12 HE: Fun 5 998 funny, watch, bad, people, scene, pretty, plot, friend, enjoy, hard

23 HE: Fun 6 739 bad, funny, awful, story, family, recommend, rent, original, watch, Hollywood

36 HE: Fun 7 729 laugh, bad, recommend, book, character, watch, song, scene, comment, time

11 NA: Story & Plot 1 824 story, performance, bad, people, plot, funny, dvd, kid, recommend, music

10 NA: Story & Plot 2 683 story, actor, enjoy, bad, plot, role, horror, play, happen, waste

Notes: k = index of topic in initial solution; topic numbers reflect the original topic numbers as assigned by the model. To ensure the
reproducibility of our results we report these numbers here. The 15 top terms per topic are available on OSF (https://osf.io/pqnk6).

we closely inspected those randomly selected reviews
that had the highest gammas (𝛾min = 0.02) and marked
to which SMEC they referred (see Table 2).

4. Results

4.1. Correlated Topic Model

To answer the question of what online movie reviewers
write about, we grouped the 14 topics into three cate-
gories for better interpretation (see Table 1). First, it is
striking that most of the discovered topics concern funni-
ness and comedy (labeled as ‘Hedonism’ [HE] category).
Although the topics in these categories have nuanced
meanings, on a general level, all of them relate to the
presence or absence of hedonic and pleasurable kinds of
media consumption. This fits into traditional lines of re-
search that assumed enjoyment to be at the heart of en-
tertainment (for a recent overview, see Raney & Bryant,
2020). Moreover, the HE category also reflects audience
reactions. Broadly speaking, this fits the subjectivemovie
evaluative criterion LH well. A second set of topics is
broadly related to the acting of the cast and summarized
in the category ‘Actors’ Performance’ (AP). Although as-
pects of how well actors play their characters is not in-
cluded in the final version of the SMEC scales, items
that tapped into this category were part of the construc-
tion process (see Table B1, Items 47–51, in Schneider,
2012a, e.g., Item 47 reflects the general performance of
actors). The third category, ‘Narrative’ (NA), comprises
topics concerning story and plot. It relates to the subjec-

tive movie evaluation criterion SI. Both AP and NA refer
to what has often been argued to be the most important
elements for movie choice or evaluation (e.g., Linton &
Petrovich, 1988; Neelamegham & Jain, 1999).

Taken together, online movie reviewers mostly write
about whether or not they enjoyed a movie, about the
APs, and about the quality of the movie’s NA.

4.2. Additional Qualitative Exploratory Results

Our initial focus lay on the topic model. During inter-
preting, labeling, and summarizing, it became clear that
some SMEC may not have emerged as topics because
they were not prevalent. Nonetheless, descriptions re-
lated to these SMEC were not totally absent from the
data. Based on material from previous research (e.g.,
criteria that participants named in open-question tasks,
content of items in the initial item pool and in the
final SMEC scales, and content of cards during modi-
fied structure formation technique; Schneider, 2012a,
2017), meaningful words and phrases were qualitatively
checked, interpreted, and marked using superscripts. To
illustrate this, we describe two examples in Table 2. They
provide deeper insight into how SMEC are applied when
writing online movie reviews. For instance, the second
example refers to SMEC such as SV, RE, or CI as well.
These examples are particularly interesting with regard
to SMEC becausemany of the criteria that have been pre-
viously described by Schneider (2012a, 2017) can be dis-
covered in these reviews.
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Table 2. Two examples of randomly selected reviews with 𝛾 ≥ 0.02 for each topic (k).

Review

Yesterday I finally satisfied my curiosity and saw this movie. My knowledge of the plot was limited to about 60 seconds of
the trailer, but I had heard some good critics 5 which caused my expectations to increase.
As I saw the movie, those untied pieces had been combined in a story that was becoming quite intriguing, with some ap-
parently inexplicable details 2. But in the end, everything is disclosed as a simple succession of events of bad luck, “sorte
nula” in Portuguese. Above everything, I felt that the story made sense, and everything fits in its place, properties of a
good script 2.
I must also mention the soundtrack, which helps the creation of an amazing environment 9.
And if you think of the resources Fernando Fragata used to make this film, I believe it will make many Hollywood pro-
ducers envious… 10

Movie Title: Sorte Nula (2004)
Path in IMDb dataset: aclImdb/test/pos/11479_8.txt

Topic k = 1; 𝛾 = 0.028

OnOctober of 1945, the AmericanGerman descendant Leopold Kessler (Jean-Marc Barr) arrives in a post-war Frankfurt and
his bitter Uncle Kessler (Ernst-Hugo Järegård) gets a job for him in the Zentropa train line as a sleeping car conductor. While
travelling in the train learning his profession, he sees the destructed occupied Germany and meets Katharina Hartmann
(Barbara Sukowa), the daughter of the former powerful entrepreneur of transport business and owner of Zentropa, Max
Hartmann (Jørgen Reenberg). Leopold stays neutral between the allied forces and the Germans and becomes aware that
there is a terrorist group called “Werewolves” killing the sympathizers of the allied and conducting subversive actions
against the allied forces. He falls in love for Katharina, and sooner she discloses that she was a “Werewolf.” When Max
commits suicide, Leopold is also pressed by the “Werewolves” and need to take a position and a decision.

“Europa” is an impressive and anguishing Kafkanian story 2 of the great Danish director Lars von Trier. Using an expres-
sionist style that recalls Fritz Lang and alternating a magnificent black & white cinematography with some coloured
details 3, this movie discloses a difficult period of Germany and some of the problems this great nation had to face after
being defeated in the war. Very impressive the action of the occupation forces destroying resources that could permit a
faster reconstruction of a destroyed country 1, and the corruption with the Jew that should identify Max. Jean-Marc Barr
has a stunning performance 11 in the role of aman that wants to stay neutral but is manipulated everywhere by everybody.
The hypnotic narration of Max Von Sydow is another touch of class 11 in this awarded film5. My vote is nine.

Movie Title: Europa (1991)
File path: aclImdb/train/pos/130_9.txt

Topic k = 1; 𝛾 = 0.028

Notes: k = index of topic; 𝛾 = the probability of a given review to be associated with the topic k (please note that we report here only
the topic with the highest probability for the respective review); file path = path to the respective file in the IMDb dataset (Maas et al.,
2011); bold with superscript indicates relation to SMEC, see interpretation below; italics indicate that text summarizes only content.
Interpretation of superscripts (Schneider, 2017, unless indicated otherwise):
1 refers to film-inherent features, SMEC: SV
2 refers to film-inherent features, SMEC: SI
3 refers to film-inherent features, SMEC: CI
4 refers to film-inherent features, SMEC: FX (not mentioned in these examples)
5 refers to film-external features, SMEC: RE
6 refers to (anticipated) effects of use, SMEC: IN (not mentioned in these examples)
7 refers to (anticipated) effects of use, SMEC: LH (not mentioned in these examples)
8 refers to (anticipated) effects of use, SMEC: CS (not mentioned in these examples)
9 refers to film-inherent features: ‘soundtrack’ was mentioned as a criterion during the SMEC development and part of the initial item
pool (see Schneider, 2012a, Appendices A and B)

10 refers to film-peripheral features: ‘production’ was mentioned as a criterion during the SMEC development (see Schneider, 2012a,
Appendix A)

11 refers to film-inherent features: ‘performance of actor’ was mentioned as a criterion during the SMEC development and part of the
initial item pool (see Schneider, 2012a, Appendices A and B)

5. Discussion and Conclusion

We started this exploratory journey by asking what on-
line movie reviewers write about and whether those on-
line reviews provide insights into underlying SMEC. To ad-

dress these questions, we applied correlated topic mod-
eling to a large IMDb dataset.

We found 14 most prevalent topics in 35,136 online
movie reviews that tapped into three major categories—
HE, AP, and NA—and indicated what reviewers mostly
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wrote about. A more detailed qualitative analysis of the
reviews revealed that users do indeed mention certain
SMEC, for example, SV, SI, CI, or RE. However, the focus of
the online movie reviews as revealed by the topic model
remains on the three overarching topic categories that
only cover two SMEC: SI and LH.

Another finding is that top words in almost every
topic represent affective reactions. This comes as no sur-
prise because affective responses often represent the va-
lence of a judgment and play an important role in movie
evaluation (Schneider et al., in press). However, affective
words in a written online movie review reflect not only
evaluative judgments but also motivations of the writ-
ers. For instance, writing online reviews also fulfills an
approval utility for the reviewers, enabling them to en-
hance themselves by signaling “a kind of connoisseur-
ship or a level of social status that can become important
to one’s selfconcept” (Hennig-Thurau, Gwinner,Walsh, &
Gremler, 2004, p. 43). IMDb quantifies this approval, for
example, through ranking reviews by their rated helpful-
ness or the prolificacy of the reviewer. In general, if re-
views contained positive emotional content, readers con-
sidered them as more helpful (Ullah, Zeb, & Kim, 2015).
Further motivations that can lead to affective elements
in reviews are concern for other consumers (e.g., intend-
ing to warn them) or the venting of negative feelings
(Hennig-Thurau et al., 2004).

Besides these contributions of the present research,
there are some limitations. Most of them concern the
IMDb reviews and the specific dataset we used (Maas
et al., 2011). First—and perhaps most problematic for
automatic text mining—online movie reviews on IMDb
vary in many aspects that may have introduced noise to
our approach. Most crucial is the fact that critiques of
a movie and summaries of its content are inextricably
interwoven (for a review that contains a large part of
content summary, see e.g., the second movie review in
Table 2). Second, the IMDb dataset that we used com-
prises movies with a wide range of quality. Whereas
most participants in the SMEC studies had specific and
typical movies in mind when answering the items, the
database we drew on also largely included mediocre
and rare exemplars. Reviewers may have applied differ-
ent criteria to qualitatively diverse movies. Some prelim-
inary evidence supports this possibility. For instance, in-
dividuals named different criteria depending onwhether
they had to think about good, bad, or typical exemplars
of a dramatic movie (Vogel & Gleich, 2012, Study 2).
Second, some of the reviews dealt with TV shows or doc-
umentaries (e.g., The 74th Annual Academy Awards or
Wrestling matches). These media types are not covered
by SMEC. As this informationwas not available in the orig-
inal dataset, it was not possible to exclude non-movie
media types. To deepen our knowledge about this issue
and get more details, we gathered meta-data of the re-
spective items via OMDb API (this newly created dataset
may also be helpful for future research and is avail-
able via OSF: https://doi.org/10.17605/OSF.IO/KA5D8).

We found that 92% of the reviews in Maas et al.‘s (2011)
dataset actually referred to movies, rendering this limi-
tation marginal. Third, the dataset included up to 30 re-
views per movie. Thus, some plots and their descriptions
could be overrepresented in the sample. However, given
this very large dataset including 50,000 reviews and over
13,000 movies, this should not lead to an imbalance.

Movie evaluation criteria frequently appeared in on-
line movies reviews. The number of criteria mentioned
easily exceeded the eight SMEC dimensions as can be
seen in the two examples in Table 2. However, they pro-
vide some support for content validity. Thus, another
way to start developing items to measure SMEC could
have been based on online movie reviews. The latent
semantic variables, or topics, comprehensively summa-
rized the content of the reviews and, using three broad
categories, can be described as HE, AP, and NA. These
categories resemble some of the SMEC (i.e., SI and LH),
showing partial support for their construct validity but
not for others (e.g., SV or CS).

Based on the conceptual framework of SMEC, we
were interested in what users write about in online
movie reviews and whether this could provide some in-
sights into movie evaluation criteria from a different per-
spective than traditional self-report. However, after in-
specting and interpreting the results of the topic models,
we found that some criteria were more prevalent than
others. This is perhaps also due to some slightly differ-
ent goals of the research projects:Whereas the construc-
tion of the SMEC scales aimed to identify interindividual
differences in what criteria viewers use when they eval-
uate movies, the present article examined what users
write about in online movie reviews and what the most
important topics are. Thus, reporting SMEC and apply-
ing them while writing about movies have a great deal
of common ground but can, nevertheless, also lead to
deviations. In short, we did not start with the idea that
an unsupervised machine learning approach to movie
reviews would result in exactly the same eight criteria
that had previously been found in SMEC research based
on self-reports. Nevertheless, we were hoping for some
unsupportive or supportive insights into movie evalua-
tion criteria.

Although it is hardly possible to explicitly state a pri-
ori hypotheses or expectations and test those against the
results of a topic model, we think that our findings may
spark interest in further assessing the usefulness of com-
putational approaches to additionally explore previous
research findings from a different angle or, if possible, to
incorporate such procedures during scale development.

Future research could test several alternative compu-
tational methods to shed light on the specific SMEC that
we could not find on the level of topics and broader cate-
gories and to further explore online movie reviews from
different angles (for a concise overview, see Günther
& Quandt, 2016). For instance, rule-based text extrac-
tion can help to refine an initial dataset by eliminating
non-evaluative parts such as content summaries (e.g.,
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Simmons et al., 2011). Building and validating a reliable
movie criteria dictionary or using supervised machine
learning to classify movie criteria based on manually la-
beled text could be another tool for computational SMEC
research. The results of our study might be useful to
plan such future analysis. However, this needs consider-
able effort and is probably not yet advisable because the
SMEC construct itself is, as outlined in the introduction of
this article, in need of further validation beyond the field
of self-reports. To resolve this dilemma, future research
endeavors that could be more deductive or supervised
may draw on specific wordings of the SMEC scale items
or on the preliminary coding scheme that has been de-
veloped during the qualitative phases of the SMEC con-
struction (Schneider, 2012a). This information may then
help to provide a gold standard for coders.

Besides choosing between unsupervised or super-
vised approaches, the predictive value of applied mod-
els could gain more attention in future. Although of-
ten examined outcome variables such as box-office suc-
cess are often the focus of media economists but not
of communication processes or effects research, a ques-
tion such as how well can detected topics predict the
evaluation of a movie on quantitative measures (e.g.,
star rating), follow-up communication (e.g., sharing or
recommending a movie), or consumer choice (e.g., se-
lecting the next movie) should matter to entertainment
scholars.Moreover, the predictive validity can be used to
compare different models and approaches and improve
them (e.g., Amplayo & Song, 2017). Our newly created
dataset provides the opportunity to engage in some of
these analyses (e.g., using topics to predict box-office
success, different types of ratings, or genre classification)
that were beyond the scope of this article.

And what about entertainment research in general?
Movies as entertainment fare have a long research tra-
dition (e.g., Günther & Domahidi, 2017). Nowadays, it
seems that economists, film studios, and online stream-
ing providers—behind closed doors—have done much
more applied work about movies than entertainment
scholars have. This also becomes obvious when we take
a look at the relevant marketing literature. For instance,
Hennig-Thurau and Houston (2019) recently published
an approximately 900-page book called Entertainment
Science and summarize the field from an economist’s
perspective, while only marginally touching on recent
advances in entertainment theory made by communica-
tion scholars and media psychologists (as summarized,
e.g., in Vorderer & Klimmt, in press). On a macro level,
a data-scientific and computational approach may bring
these different disciplines closer together and recognize
each other’s achievements more thoroughly. It may not
only be scholarly work (e.g., Taneja, 2016) that bene-
fits but also entertainment industries that could learn
from media and communication studies. If they inter-
face with each other better, analyzing Big Data against a
social-scientific background may help to improve recom-
mender systems and user experiences within online re-

view platforms, video streaming portals, or mixed-media
channels. Although there are some notable but rare ex-
ceptions (e.g., Oliver, Ash, Woolley, Shade, & Kim, 2014),
most entertainment researchers have not taken full ad-
vantage of the digital traces or responses that are pub-
licly available online. Utilizing these data and applying
computational methods to address open questions or
supplement previous research could be a crucial factor
for advancing both movie evaluation research and enter-
tainment theory.
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