

Does Telework Work for Everyone? Teleworking's Impact on Wellbeing Across Gender and Parental Status

Jente Versigghel ¹ , Hannah Hook ² , Jonas De Vos ³ , and Frank Witlox ^{1,4}

¹ Department of Geography, Ghent University, Belgium

² Department of the Built Environment, Aalto University, Finland

³ Bartlett School of Planning, University College London, UK

⁴ Department of Geography, University of Tartu, Estonia

Correspondence: Jente Versigghel (jente.versigghel@ugent.be)

Submitted: 16 October 2025 **Accepted:** 17 December 2025 **Published:** 28 January 2026

Issue: This article is part of the issue “Digital Transition and New Forms of Spatial Inequality” edited by Tiit Tammaru (University of Tartu), Kadi Kalm (University of Tartu), and Rūta Ubarevičienė (Lithuanian Centre for Social Sciences), fully open access at <https://doi.org/10.17645/si.i468>

Abstract

The rise in teleworking has reshaped patterns of work, travel, residential choices, and social interaction, but its effects are not evenly distributed across space or socio-economic groups. Although previous studies highlight both positive and negative consequences of teleworking, less is known about how it affects wellbeing, and whether these effects differ by gender and childcare responsibilities—two factors closely linked to unequal household and caregiving burdens. This study addresses these gaps by examining how teleworking relates to commute-related wellbeing and general life satisfaction, and whether these relationships vary according to gender and the presence of children in the household. Data were collected through an online survey, targeting employees in East Flanders, Belgium. We estimated two OLS models to assess the influence of teleworking frequency on (a) commute-related wellbeing and (b) general life satisfaction. The results show that teleworking is a significant predictor of commute wellbeing, but not of general life satisfaction. To explore the moderating role of gender and childcare responsibilities, we estimated two extended models: one including an interaction term between teleworking and gender, and another including an interaction between teleworking and the presence of children. We did not find evidence of gender differences among teleworkers or non-teleworkers in commute wellbeing or life satisfaction. However, combining teleworking with childcare, especially for children under the age of six, was associated with lower life satisfaction, suggesting that the digital transition may reinforce existing social inequalities.

Keywords

childcare; commute wellbeing; East Flanders (Belgium); life satisfaction; remote working arrangements

1. Introduction

The share of people in Flanders who sometimes or usually work from home increased from fewer than one in five in 2019 to one in three in 2024, driven by increasing digitalisation and accelerated by the Covid-19 pandemic (“One employee,” 2025a), with important implications for employee wellbeing. Previous studies show that teleworking can influence wellbeing and health both positively and negatively. In terms of physical health, teleworking is associated with higher levels of physical activity due to increased flexibility and a lower risk of physical inactivity, for example, by reducing passive commute time (Beckel & Fisher, 2022). Effects on mental and psychological wellbeing are more mixed, with teleworking associated with greater autonomy, increased performance and job satisfaction, reduced stress and fatigue, and improved affective wellbeing (Allen et al., 2015; Anderson et al., 2015; Beckel & Fisher, 2022; Delanoeije & Verbruggen, 2020), as well as increased social isolation, stress levels, and social stigmatization (Allen et al., 2015; Athanasiadou & Theriou, 2021; Beckel & Fisher, 2022; Chuang et al., 2024).

Teleworking also has mixed social effects (Allen et al., 2015; Athanasiadou & Theriou, 2021). Greater autonomy and flexibility may reduce work–family conflict and improve work–life balance, but blurred spatial and temporal boundaries and increased household responsibilities can heighten stress, distractions, and work–family conflict (Allen et al., 2015; Beckel & Fisher, 2022; Delanoeije & Verbruggen, 2020). These effects are context-dependent and moderated by factors such as telework frequency, prior telework experience, gender, job and task characteristics, voluntariness of telework, and preferences regarding work–life separation (Allen et al., 2015; Beckel & Fisher, 2022).

Gender imbalances are particularly salient, as traditional gender roles often become reinforced when working from home (Sullivan & Lewis, 2001). While teleworking flexibility may help women balance work and personal life, women are more likely to combine paid work with childcare and household responsibilities, raising concerns about wellbeing, work–family conflicts, and career progression (Beckel & Fisher, 2022; Desjardins et al., 2024; Peters et al., 2009; Sullivan & Lewis, 2001). Women are also more often expected to take on household tasks when working flexibly, whereas men tend to prioritise paid work, potentially disadvantaging women in career outcomes (Chung & van der Lippe, 2020). These gendered imbalances intensify with childcare responsibilities (Beckel & Fisher, 2022; Desjardins et al., 2024). Although childcare-related interruptions increase emotional fatigue and reduce work engagement for both genders, women are more likely to perceive work interruptions during childcare as hindering, whereas men more often report positive aspects linked to work-related goals, reinforcing gender disparities in wellbeing (Desjardins et al., 2024). The extent to which these patterns reflect gender norms versus household structure remains unclear (Beckel & Fisher, 2022).

Worker wellbeing and satisfaction can be assessed through general life satisfaction as well as domain-specific measures, such as job- or commute-related satisfaction. While telework effects on life satisfaction and job-related satisfaction are well-studied (Anderson et al., 2015; Chuang et al., 2024; Dale et al., 2024), commute-related satisfaction remains understudied (Maheshwari et al., 2024). As teleworking is sometimes adopted to avoid stressful commutes (Budnitz et al., 2020; Wöhner, 2022), it may also affect commute satisfaction.

The study aims to examine how teleworking frequency affects (a) commute-related wellbeing (CWB) and (2) general life satisfaction (SWL), and whether these effects differ based on gender and childcare responsibilities. The two main research questions are:

1. How does teleworking frequency influence CWB, and how do these effects vary by gender and childcare responsibilities?
2. How does teleworking frequency influence life satisfaction, and how do these effects vary by gender and childcare responsibilities?

We estimate a series of OLS regression models. First, a baseline model includes teleworking frequency as the main predictor. Second, we add an interaction between telework adoption and gender. Third, we include an interaction between teleworking and the presence of children in the household.

2. Literature Review

2.1. Remote Working Arrangements

Remote working arrangements have expanded rapidly due to advancements in digital infrastructure, increased awareness of work-life balance, and forced experimentation during the Covid-19 pandemic (Glackin & Moglia, 2022). These arrangements are flexible in space and frequency, encompassing working from home, satellite offices, or mobile locations (Thompson, 2019). While telecommuting has been studied for decades (Mokhtarian & Salomon, 1997; Pliskin, 1997), the pandemic catalyzed mainstream adoption across the European Union, narrowing the gap between teleworkable jobs and actual teleworking (Sostero et al., 2020). Empirical evidence shows increasing supply and demand for remote work, though employer and employee expectations may diverge (Aksoy et al., 2022), with many employees willing to accept reduced salaries for the option to telework (Lewandowski et al., 2022).

Preferences for remote or hybrid arrangements are linked to greater flexibility, autonomy, and reduced commute stress (Deole et al., 2023; Fonner & Roloff, 2010). However, benefits depend heavily on individual context. Telework mismatch, divergence between preferred and actual teleworking frequency, has emerged as a key source of dissatisfaction (Heiden et al., 2023). Negative mismatch (i.e., working from home less than preferred) is associated with lower commute satisfaction, reflecting reduced autonomy and control over working conditions.

Access to remote working is socially uneven. High-income and high-education workers disproportionately benefit (Sostero et al., 2020), although telework-enabled job postings may help reduce urban-rural employment gaps (Alipour et al., 2021). Nonetheless, digital skill divides and occupational constraints limit universal access (Cedefop, 2020; Eurobarometer, 2020), raising concerns that flexible work may reinforce existing labour market inequalities.

2.2. Teleworking and Commuting Behaviour

The most visible effect of teleworking is reduced commuting. Classical transport studies show decreased vehicle miles travelled and congestion (Walls & Safirova, 2004), but these reductions are not straightforward

(Wang & Mokhtarian, 2024). Rebound effects may occur when teleworkers (especially part-time ones) live farther from work, increasing total weekly distances travelled despite fewer commute days (Ravalet & Rérat, 2019).

Teleworking also affects commute mode and experience. Hybrid work allows greater flexibility in travel timing and mode choice, potentially encouraging cycling or public transport (Kim et al., 2021). Furthermore, cycling, e-biking, and train use are strongly and positively associated with higher commute satisfaction, relative to car use (Handy & Thigpen, 2019; St-Louis et al., 2014). Subsequently, commute satisfaction is influenced not only by duration and reliability, but also by the intrinsic experience of the journey (Ye & Titheridge, 2017).

However, not all teleworkers benefit equally. Urban form and infrastructure constrain mode choice. Telework may actually increase automobile reliance, especially in car-dependent suburban areas. Reduced commuting weakens regular travel to dense, transit-rich employment centers, while everyday activities such as shopping, escorting children, or leisure remain spatially dispersed and poorly served by public transport. As a result, teleworkers may replace fewer but longer commute trips with a higher number of short, car-based non-work trips, using telework as a strategy to cope with long commutes without changing car-oriented lifestyles, resulting in more weekly vehicle miles travelled by car (Silva & Melo, 2018). Reduced commuting to central offices may be offset by increased travel for shopping or leisure (Balbontin et al., 2024), especially in contexts where walkable neighbourhoods are lacking. These complexities indicate that telework may alter, but not necessarily reduce, total mobility demand.

2.3. Commute Satisfaction, Subjective Wellbeing, and Broader Socio-Spatial Implications

Commute satisfaction has increasingly been recognized as a component of overall life satisfaction (De Vos et al., 2013). Early studies emphasized the detrimental psychological impact of long commutes, labeling them “the stress that doesn’t pay” (Stutzer & Frey, 2008). Subsequent research has expanded this perspective by conceptualizing commuting as an affective and experiential process through psychometric scales, such as the Satisfaction with Travel Scale (STS; Ettema et al., 2011), which captures both cognitive and emotional responses to daily travel.

Empirical evidence consistently shows that longer commute durations significantly reduce commute satisfaction (De Vos et al., 2022), while active and public modes, particularly cycling and e-biking, enhance it (Ye & Titheridge, 2017). These findings align with broader research demonstrating that active commuting is associated with improved mood, reduced stress, and physical health benefits (Friman et al., 2017; Martin et al., 2014). The positive correlation between commute satisfaction and overall life satisfaction also reinforces the idea that daily mobility is an integral component of subjective wellbeing (Olsson et al., 2013).

Within this framework, teleworking can be understood as a structural change that reshapes both the frequency and experience of commuting. By reducing exposure to long or stressful commutes, telework has the potential to improve commute satisfaction and, indirectly, overall wellbeing. However, these benefits are not automatic. When individuals are unable to telework as frequently as they would prefer, for instance, they may perceive each commute as more burdensome (Heiden et al., 2023). These findings reflect the broader literature linking autonomy, control over one’s schedule, and wellbeing (Sardeshmukh et al., 2012). Thus, commute satisfaction is not solely a function of transport but is linked to work organization and perceived quality of everyday life.

Moreover, remote working arrangements have important implications for environmental sustainability and urban systems. Reduced commuting is expected to lower transportation emissions and alleviate congestion (Beck & Hensher, 2021), but these effects depend on mode substitution and residential location. For individuals living close to work, the environmental benefits of telework may be minimal or offset by increased residential energy consumption (Beck & Hensher, 2021), while greater flexibility may encourage longer but less frequent commutes among hybrid workers, potentially increasing weekly travel distances (Ravalet & Rérat, 2019).

From a planning perspective, telework offers opportunities for spatial reconfiguration. In principle, reduced reliance on centralized offices may create longer-term opportunities to reconsider the use of certain office-dominated urban spaces, including their potential conversion to green space or social infrastructure (Glackin & Moglia, 2022). Similarly, the decentralization of work could support the revitalization of suburban or rural areas (Alipour et al., 2021). While these dynamics align with the broader objective of proximity-based planning models such as the X-minute city, the relationship is indirect. Telework primarily operates through behavioural and organizational change, whereas proximity-based models seek to restructure daily accessibility through spatial planning and urban design (Allam et al., 2022; Moreno et al., 2021). Under certain conditions, however, telework-related decentralization may also generate trade-offs, including risks of urban disinvestment, rising suburban demand, and strain transit systems designed for radial flows, potentially redistributing accessibility, mobility costs, and service quality that disadvantage already vulnerable groups (Mouratidis, 2021).

Finally, teleworking intersects with questions of mobility justice. Workers unable to telework, who are disproportionately lower-income and in essential sectors, may experience worsening mobility conditions if transit systems are deprioritized or underfunded due to declining ridership (Lucas et al., 2016). Without inclusive and equity-oriented planning responses, the mobility benefits of remote working risk reinforcing existing socio-spatial inequalities.

2.4. Gender, Household Context, and Inequality in Digitally Transforming Societies

The benefits of teleworking are unevenly distributed across socio-demographic groups, particularly along gender, caregiving, and occupational lines. Women, especially those with young children, report lower satisfaction with telework due to intensified household labour and blurred boundaries between work and home (Castro-Trancón et al., 2024; Lu & Zhuang, 2023). These patterns echo findings during the Covid-19 pandemic that highlight the unique strains faced by parents attempting to balance productivity and caregiving in the same physical space (Bertoni et al., 2021; Rubin et al., 2020).

On the other hand, prior studies report mixed and inconclusive evidence regarding systematic gender differences in either commute satisfaction or life satisfaction. While women may experience greater caregiving burdens, they may also benefit more from flexible scheduling and reduced commute times, leading to heterogeneous outcomes (Castro-Trancón et al., 2024). Importantly, the absence of consistent aggregate effects should not be interpreted as the absence of inequality. Rather, the intersection of gender, telework, and caregiving remains deeply context-specific, shaped by organizational support (such as formal telework policies, flexibility in scheduling, or managerial attitudes), cultural expectations, and the age of children (Clar-Novak, 2024; Çoban, 2022; Karjalainen, 2023; Tremblay, 2002; Vander Elst et al., 2017).

Household composition further shapes telework-related mobility and wellbeing. Dual-income or dual-teleworker households may redistribute responsibilities and adjust mobility patterns differently than more traditional household arrangements, where the division of domestic labour may remain unchanged despite both partners working from home (Gueguen & Senik, 2021; Rubin et al., 2020). Additionally, the spatial characteristics of the domestic environment condition how teleworking is experienced. Housing size, layout, and access to private workspace influence the ability to separate work, care, and leisure activities (Azimzadeh & Sharghi, 2025), with more constrained or shared domestic settings often intensifying role conflict and negative wellbeing impacts.

Furthermore, inequalities in access to teleworking are fundamentally shaped by the nature of employment itself. Many occupations (e.g., manufacturing, retail, or care work) are inherently non-teleworkable, creating a structural divide between workers who can and cannot benefit from digital work arrangements. As a result, high-income and highly-educated individuals disproportionately benefit from teleworking, even though digitalization may offer some potential to reduce urban-rural employment disparities (Alipour et al., 2021; Sostero et al., 2020). Spatial context further conditions these inequalities. While teleworking can help to cope with long commutes, residents of less central or car-dependent areas may face constrained mode choice and increased car dependency (Silva & Melo, 2018). Moreover, individuals unable to telework, due to social, work-related, or spatial factors, may be doubly disadvantaged if declining ridership leads to reduced investment in public transport systems on which they disproportionately rely (Lucas et al., 2016).

3. Data and Method

3.1. Data Collection and Case Study

The data were collected through an online survey on teleworking, travel, and wellbeing, targeting individuals working in East Flanders, a province located in the northwest of Belgium. East Flanders is a densely populated region (529 inhabitants/km²) with around 1.6 million residents in 2025. In 2022, 77.7% of inhabitants aged 20–64 were employed, and roughly two-thirds of them worked full-time (Provincies in cijfers, 2025a).

Teleworking has become increasingly common in the region. In 2024, about one-third of the population was teleworking, placing Flanders among the European regions with the highest uptake ("One employee," 2025a). The uptake, however, differs strongly between sectors, with around half of the public sector employees teleworking compared to 28% in the private sector ("One employee," 2025a). Belgium policy distinguishes between structural teleworking, which requires a written agreement on frequency, location, availability, and reimbursement, and occasional teleworking, which does not. Structural teleworking is by far the dominant form (over 75%), regardless of organization size, and is expected to remain so (Telewerken, 2025a). Teleworkers may receive reimbursements for work-related costs such as equipment (screen or printer) or internet access (Telewerken, 2025b).

Commuting patterns in East Flanders are diverse. The car is the most common mode (58%), followed by bike (20.5%), and public transport (17.4%). On average, households own 1.1 cars, and nearly one-third have at least one public transport subscription. Accessibility to public transport is relatively good: In 2021, 87.2% of East Flemish households lived within five kilometres of a train station, and 58.8% within 200 metres of a public transport stop (Provincies in cijfers, 2025b).

The survey was distributed to employees of public institutions and private companies in East Flanders between October 2023 and January 2024. We first contacted multiple organizations, and when they expressed interest in distributing the survey, it was shared with their employees via mailing lists. The organisations that agreed to distribute the survey were predominantly active in research and public governance (e.g., Ghent University, the Province of East Flanders, and the City of Ghent). As a result, the sample is skewed toward highly educated and higher-income respondents, as well as women. Nearly 85% of the sample reports teleworking, compared to about 33% teleworkers in Flanders overall ("One employee," 2025a). However, women, highly educated individuals, people in intellectual or scientific occupations, and those working in the public sector are all more likely to telework than the Flemish average ("Structuur van de bevolking," 2025b). Given this overrepresentation of groups for whom telework is more common, the findings cannot be generalised to the full working population but instead reflect patterns among high-skilled workers in telework-accessible positions.

3.2. Statistical Approach and Variables

The study examines how teleworking frequency affects CWB and SWL, and how these effects vary by gender and childcare responsibilities. CWB was measured with the Satisfaction with Travel Scale (Ettema et al., 2011), based on nine statements capturing affective and cognitive aspects of commute satisfaction, with the final score calculated as their mean. SWL reflects general life satisfaction and was measured using five statements from the Satisfaction with Life Scale (Diener et al., 1985), with the final score calculated as their average. An overview of all variables used in the OLS models is provided in Table 1A (Supplementary File).

Telework frequency, measured as the average number of days per week the respondent works from home, is the main predictor in the baseline model. The extended models include interactions with gender (gender model) and with the presence of children in the household (childcare model) to assess whether effects vary by gender and childcare responsibilities. Several control variables were included. For teleworking, we account for teleworking mismatch (the difference between actual and preferred teleworking days) and dual-teleworkers, a binary indicator of whether both the respondent and their partner telework at least once per week. Socio-demographic controls include gender, age, higher education, income, and household composition. Regarding occupation, two variables were added: working full-time (a binary indicator) and work frequency, the average number of days per week the respondent performs paid work. Travel-related indicators include driver's license, number of cars, main commute mode, average commute distance, average commute duration, average weekly number of commute trips, and neighbourhood. The latter captures perceived urbanization. Respondents indicated how urbanized they considered their residential neighbourhood to be on a 0–100 scale, where 0 represents a very rural area and 100 a very urbanized area. Lastly, CWB and SWL were included as control variables in each other's models due to their mutual influence (Maheshwari et al., 2024).

3.3. Characteristics of the Sample

The online survey resulted in a sample of 1290 respondents, which was reduced to 1029 after removing incomplete and invalid cases. Over 80% of the removed cases did not complete the survey. Additionally, 42 respondents had a workplace outside the study area, and eight did not fit in our definition of a teleworkable job, as unpaid work and freelance occupations were excluded.

The sample was predominantly female (65%), with nearly three-quarters living with a partner and around half having children in the household. Most respondents teleworked at least once per week (higher than the Flanders average due to the targeted companies) with an average of 1.79 days per week. On average, respondents teleworked about half a day less than they preferred, though individual telework mismatch varied substantially.

When traveling to their workspace, the car is the most common mode (32%), closely followed by non-electric bike (27%) and electrical bike (19%). Public transport accounts for around 23% of commuting trips, with the train as the main public transport mode. The share of respondents using other modes is marginal. The average one-way commute distance was 20.2 km and the one-way travel time was 35.1 minutes. Wellbeing levels were generally positive, with a mean commute wellbeing of 4.61 (7-point scale) and life satisfaction of 3.57 (5-point scale), though individual scores varied widely. A descriptive table is included in the Supplementary File for reference (Table 2A).

4. Results

4.1. Model 1: Commute Wellbeing

Three OLS models were estimated to assess (a) general effects, (b) gender-related effects, and (c) childcare-related effects of teleworking on CWB. All models were tested for compliance with OLS assumptions. Eighteen outliers were removed. Two variables, *commute distance* and *living with partner*, were excluded due to multicollinearity violations. *Commute distance* ($VIF = 4.8$) had a correlation of 0.82 with *commute duration*, while *living with partner* ($VIF = 5.9$) had a correlation of 0.89 with *dual-earners*. The correlation matrix has been added to the Supplementary File for reference (Table 3A).

Table 1 presents the outcomes of the baseline model, which explains approximately 35% of the variance in commute wellbeing. First, teleworking is a significant predictor of commute wellbeing. More frequent teleworking is associated with lower commute wellbeing: For each additional day of teleworking per week, commute wellbeing decreases by 0.141 points. In addition, teleworking less frequently than preferred (a negative telework mismatch) is associated with lower commute satisfaction. This indicates that individuals who would like to telework more perceive their commute as less satisfying. Several commute-related characteristics also influence commute wellbeing. Individuals with longer one-way commute durations report, on average, lower commute satisfaction. In contrast, those commuting by bike, e-bike/motorbike, or train report higher commute wellbeing compared to car users. The strongest positive effects are observed for e-bike and motorcycle users, followed closely by non-electrical bike users. Additionally, both age and work frequency are positively associated with commute satisfaction: Older individuals and those who work more days per week tend to report higher commute wellbeing. Finally, SWL is a strong predictor of commute wellbeing, suggesting that wellbeing in broader life domains spills over into the commuting experience.

In the two extended models, the gender model and the childcare model, no significant effects related to gender or childcare responsibilities were found. Both models are included in the Supplementary File for reference (Tables 4A and 5A). Neither gender nor the presence of children in the household had a significant impact on commute wellbeing, neither as separate variables (*female* and *children* in the baseline model) nor in interaction with teleworking (gender model and childcare model).

Table 1. Commute wellbeing: Baseline model outcomes.

	Coefficient	t-test	p-value
Intercept	1.498	3.053	0.002
Telework frequency	-0.141	-4.052	< 0.001***
Telework mismatch	0.167	4.309	< 0.001***
Dual-teleworker	-0.008	-0.096	0.924
Female	-0.018	-0.250	0.802
Age	0.022	6.198	< 0.001***
Higher education degree	0.146	1.048	0.295
Income €3501–€5500	0.096	1.142	0.254
Income < €3500	0.145	1.144	0.253
Dual-earners	-0.095	-0.891	0.373
Number of children	-0.014	-0.291	0.771
Youngest child under 6	0.092	0.708	0.479
Youngest child 6–11	0.136	1.022	0.307
Youngest child 12–17	0.020	0.151	0.880
Working fulltime	-0.150	-1.340	0.181
Work frequency	0.164	2.391	0.017**
Drivers license	-0.073	-0.491	0.624
Number of cars	0.071	1.288	0.198
Main mode bike	0.997	8.907	< 0.001***
Main mode e-bike, motorbike	1.113	10.534	< 0.001***
Main mode train	0.497	3.737	< 0.001***
Main mode tram, bus, metro	0.280	1.572	0.116
Commute duration	-0.010	-4.255	< 0.001***
Commute trips	0.020	0.669	0.504
Neighbourhood	-0.001	-0.937	0.349
Satisfaction with life	0.425	8.248	< 0.001***

Note: Significance levels: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

4.2. Model 2: SWL

Similar to the CWB models, three OLS models were estimated to assess (a) general effects, (b) gender-related effects, and (c) childcare-related effects of teleworking on life satisfaction. All three models were tested for compliance with OLS assumptions. Eighteen outliers were removed, and the variables *commute distance* and *living with partner* were excluded due to multicollinearity issues (see Table 3A in the Supplementary File). The residuals appeared slightly left-skewed, and the Shapiro-Wilk test for normality had a significant p-value, indicating a potential violation of the normality assumption. However, given the absence of heteroskedasticity and the large sample size, which increases the robustness of OLS estimates, no serious violations were expected. As a robustness check, the models were re-estimated using robust standard errors, which showed no substantial differences.

Table 2 shows the outcomes of the Baseline model. The model explains around 16% of the variance in SWL. Telework frequency and telework mismatch were not found to be significant predictors of SWL. Although telework frequency itself was not a significant predictor of SWL, it may still have an indirect effect via the number of commute trips. However, the number of commute trips was not a particularly strong predictor of life satisfaction (p -value = 0.073). As with the commute wellbeing results, several commute-related characteristics influence life satisfaction, though with some differences. Whereas individuals commuting by bike, e-bike/motorbike, or train reported higher commute wellbeing, those commuting by e-bike/motorbike and by tram, bus, or metro reported, on average, lower SWL. The effect was strongest for those using tram, bus, or metro. Furthermore, individuals who perceived their residential neighbourhood as more urban reported, on average, lower SWL. It is important to note that this variable is a subjective measure, the perceived level of urbanisation reported by the resident, and may not necessarily correspond to the actual degree of urbanisation of the neighbourhood. Sociodemographic characteristics also played a role. In contrast to CWB, where older individuals reported higher scores, older individuals reported lower SWL.

Table 2. SWL: Baseline model outcomes.

	Coefficient	t-test	p-value
Intercept	4.324	10.098	< 0.001***
Telework frequency	0.023	0.717	0.474
Telework mismatch	-0.041	-1.151	0.250
Dual-teleworker	-0.105	-1.410	0.159
Female	0.035	0.531	0.595
Age	-0.011	-3.459	< 0.001***
Higher education degree	0.113	0.878	0.380
Income €3501–€5500	-0.281	-3.672	< 0.001***
Income < €3500	-0.351	-3.014	0.003***
Dual earners	0.368	3.764	< 0.001***
Number of children	-0.120	-2.655	0.008***
Youngest child under 6	0.071	0.589	0.556
Youngest child 6–11	0.060	0.494	0.622
Youngest child 12–17	0.112	0.893	0.372
Working fulltime	-0.001	-0.014	0.988
Work frequency	0.029	0.465	0.642
Drivers license	0.215	1.582	0.114
Number of cars	-0.031	-0.604	0.546
Main mode bike	-0.043	-0.399	0.690
Main mode e-bike, motorbike	-0.258	-2.495	0.013**
Main mode train	0.001	0.009	0.993
Main mode tram, bus, metro	-0.438	-2.672	0.008***
Commute duration	-0.001	-0.401	0.688
Commute trips	-0.050	-1.796	0.073*
Neighbourhood	-0.003	-1.967	0.050*
Commute wellbeing	0.258	8.248	< 0.001***

Note: Significance levels: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

Respondents with a low to median household income also reported lower SWL compared to those in the highest income group, with the strongest negative effect observed in the lowest income category. In addition, dual earners reported higher SWL than single earners. The number of children in the household negatively relates to SWL. Finally, commute wellbeing is a strong and significant predictor: Having a more positive commute wellbeing score was also associated with higher SWL.

In the Gender Model, which includes the interaction term between teleworking and gender, no significant effects related to gender were found. The table is included in the Supplementary File for reference (Table 6A). Gender does not appear to have a significant effect on life satisfaction, neither as a separate variable (*female* in the baseline model) nor in interaction with teleworking (*telework × gender* in the gender model). Female teleworkers did not report significantly different levels of SWL compared to male teleworkers, female non-teleworkers, or male non-teleworkers.

While teleworking frequency did not have a significant impact on SWL in the Baseline Model, the interaction between teleworking and the presence of children was found to be significant. Table 3 presents the significant results of the model extended with the childcare interaction term (childcare model). Teleworkers without children and non-teleworkers with children reported significantly higher SWL than teleworkers with children, with the strongest effects observed for non-teleworkers with children. The significantly higher life satisfaction reported by non-teleworkers with children, compared to teleworkers with children, became an even stronger association when the children were younger. The strongest effects were found for households with children under the age of six. These findings suggest that combining childcare responsibilities, especially for young children, with working from home negatively affects individuals' life satisfaction.

Table 3. SWL: Childcare Model outcomes (significant only model).

	Coefficient	t-test	p-value
Intercept	3.265	21.088	< 0.001
Teleworker, without children	0.109	2.198	0.028**
Non-teleworker, with children	0.173	1.811	0.071*
Non-teleworker, without children	0.100	1.192	0.234
Age	-0.009	-4.246	< 0.001***
Income €3501–€5500	-0.199	-3.969	< 0.001***
Income < €3500	-0.216	-2.854	0.004***
Dual-earners	0.262	4.291	< 0.001***
Main mode bike	-0.045	-0.656	0.512
Main mode e-bike, motorbike	-0.188	-2.788	0.005***
Main mode train	-0.017	-0.271	0.787
Main mode tram, bus, metro	-0.348	-3.217	0.001***
Commute trips	-0.038	-2.267	0.024**
Neighbourhood	-0.001	-1.526	0.127
Commute wellbeing	0.184	8.841	< 0.001***

Note: Significance levels: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

It is important to note that gender was not found to be significant in either the baseline model or the gender model and was therefore not included in the final model (childcare model). Although prior research suggests gender differences due to unequal childcare responsibilities (Beckel & Fisher, 2022; Desjardins et al., 2024), our results show that the significant relationship is between teleworking and the presence of children in the household, regardless of gender.

5. Discussion

This study examined the impact of teleworking frequency on commute wellbeing and SWL, and how these relationships relate to gender and childcare imbalances. First, teleworking frequency is a significant predictor of commute wellbeing: individuals who telework more often report lower levels of commute wellbeing. One possible explanation is that frequent teleworkers may be more willing to tolerate less pleasant commutes because they commute less often than non-teleworkers. In this view, teleworking reduces the perceived impact of an undesirable commute: a worker may tolerate an unpleasant trip if they know they do not have to undertake it every day. Alternatively, teleworking may be used as a coping strategy for less desirable commutes. Employees with long, stressful, or uncomfortable commutes may have a stronger motivation to telework in order to reduce the burden of daily travel. This aligns with the finding that active commute modes and train travel are generally associated with higher commute satisfaction than car travel, as they can reduce stress and contribute to better physical and mental wellbeing (Friman et al., 2017; Martin et al., 2014). Conversely, longer commute times, which tend to be more common among teleworkers (Versigghel et al., 2025), are negatively associated with commute satisfaction. Furthermore, individuals who commute less frequently than they would prefer report significantly lower average commute wellbeing scores. This suggests that these respondents experience their commute as particularly unpleasant or burdensome. Their lower wellbeing scores likely reflect dissatisfaction with the commute itself, which could strengthen their desire to telework more frequently to avoid these undesirable travel experiences. In contrast to the findings for commute wellbeing, teleworking was not identified as a significant predictor of SWL. However, the weekly number of commute trips did emerge as a significant factor: Individuals who commuted more frequently reported lower life satisfaction scores on average. This suggests that teleworking may still indirectly influence SWL by reducing the number of commute trips (Budnitz et al., 2020; Versigghel et al., 2025; Wöhner, 2022).

By focusing on gender and childcare, this study also provides insight into how the digital transformation of employment affects the wellbeing of specific social groups. Regarding gender, we did not find significant differences in commute wellbeing or life satisfaction, either as a separate variable or through its interaction with teleworking. This was contrary to our expectations, given the literature on unequal childcare responsibilities between men and women (Beckel & Fisher, 2022; Desjardins et al., 2024). However, this finding does not necessarily imply that gender disparities are absent in Flanders. Employment and wage gaps persist (Assal et al., 2022), and women continue to spend more time on household chores than men (Audenaert, 2023). The lack of significant effects in our models may be due to complex underlying relationships between gender, teleworking, and wellbeing that are not fully captured by commute and life satisfaction measures alone. For example, while teleworking can increase the likelihood of work-life conflict and caretaking burdens for women as the boundaries between home and work become blurred, it can also offer benefits. Teleworking can provide greater flexibility and fewer commute trips, allowing some women to better balance work and personal life (Beckel & Fisher, 2022; Desjardins et al., 2024). These gendered

dynamics are particularly pronounced when childcare responsibilities are considered, with studies showing that gender imbalances tend to intensify in such contexts (Beckel & Fisher, 2022; Desjardins et al., 2024).

Building on this, childcare was found to have a significant effect on life satisfaction. Although teleworking offers several advantages, it has also been shown to increase household-related inequalities. In our results, teleworkers with children reported significantly lower life satisfaction than both teleworkers without children and non-teleworkers with children. The strongest effect was observed for non-teleworkers with children, indicating that among parents, those who telework experience notably lower life satisfaction than those who do not. This finding aligns with existing research showing that combining telework with childcare can create stressful and conflictual situations. Childcare interruptions during work hours and work interruptions during childcare are often experienced as disruptive, especially for women (Desjardins et al., 2024). Importantly, it is not only the presence of children but also their age, which often reflects the intensity of caregiving burden, that matters. When comparing non-teleworkers with children to teleworkers with children, the difference in life satisfaction was even larger among those with younger children. The greatest gap was observed between non-teleworkers and teleworkers with children under the age of six, suggesting that the combination of teleworking and caring for young children has a particularly strong negative impact on life satisfaction. Overall, these results indicate that the digital transformation of employment does not affect everyone equally. Instead, its effects depend on individuals' socio-economic, spatial, and work-related circumstances.

6. Conclusion

Teleworking has reshaped patterns of work, travel, residence, and social interaction, but its effects are unevenly distributed across socio-economic groups. Our study found that teleworking significantly predicts commute wellbeing, but not SWL. While gender disparities persist in Flanders and teleworking has the potential to intensify them, we found no significant gender effects on commute or life satisfaction. However, combining teleworking with childcare, especially for young children, was associated with lower life satisfaction.

These findings suggest that the digital transition may reinforce existing social inequalities. Workers who have access to high-quality childcare, or commute by active modes and high-quality public transport, are likely to experience greater wellbeing gains. Conversely, those with more caregiving responsibilities or poorer access to infrastructure may experience lower levels of satisfaction. In this way, the shift toward digital work risks deepening inequalities between different groups, underscoring the need for policies that ensure equitable access to the opportunities and benefits of teleworking.

Based on our findings, we propose the following policy recommendations. First, since a higher telework frequency and teleworking less frequently than preferred are negatively associated with commute wellbeing, it is important to develop flexible telework schemes that align with workers' preferences. In particular, individuals who (wish to) adopt telework to avoid time-consuming, costly, or stressful commutes will benefit from increased flexibility. Second, promoting active and collective transport modes, such as walking, cycling, and train travel, can enhance commute satisfaction. Investments in infrastructure, comfort, and reliability, alongside financial incentives (e.g., reimbursements when using active modes, flexible public transport subscriptions, e-bike leasing systems), can encourage employees to adopt these modes for commuting. This

would not only improve commute wellbeing but also reduce traffic congestion, peak-hour traffic, and greenhouse gas emissions. Importantly, teleworkers should also be included in these schemes by providing more flexible arrangements that reflect their different commuting patterns. Finally, since teleworking in combination with caring for young children was associated with significantly lower life satisfaction, the provision of sufficient, high-quality, and affordable childcare is crucial. In Flanders, childcare supply has for years lagged behind demand, with over 30% of parents of young children unable to find a place in 2024 (Lamote, 2025). This shortage can force parents, often women, to reduce working hours, take leave, or combine working from home with childcare duties, which negatively impacts wellbeing. This underlines the importance of sufficient childcare provision, or better coordination between school and working hours. Employers can support work-life balance by encouraging clear boundaries between work and personal time, for example, through a right to disconnect or meeting-free time slots in the morning or late afternoon.

Furthermore, there are several study limitations that must be addressed. First, the sample is not representative of the general working population of East Flanders. The recruitment method resulted in an overrepresentation of highly educated, high-income, and female respondents with above-average telework opportunities. Consequently, findings may not be generalizable to sectors with lower telework feasibility, such as manual labour or service industries. Second, the cross-sectional design limits the ability to infer causal relationships. Associations between telework frequency, wellbeing, and life satisfaction capture correlations at one point in time without the opportunity to assess how these relationships evolve alongside hybrid work norms. In addition, gender and parental status are likely to interact with other forms of inequality, for example, age, migration background, and economic or educational status, in shaping telework uptake and wellbeing. Finally, while the study controlled for several sociodemographic, work-related, and commute-related variables, unobserved factors (such as job satisfaction, management support, home working conditions, or mental health) may also influence wellbeing outcomes.

Future research can address these limitations and build upon these findings in several ways. First, longitudinal studies should track changes in telework frequency, commute patterns, and wellbeing over time to capture adaptation effects and potential for long-term consequences. Second, more diverse and representative samples across industries, income groups, and spatial contexts would help assess equity impacts of teleworking and generalise findings beyond high-skilled sectors. Third, future studies should integrate qualitative or mixed-methods approaches to explore how individuals experience telework in relation to family dynamics, work-life boundaries, and emotional wellbeing.

Overall, our findings highlight the importance of aligning telework policies with the diverse needs of workers and ensuring that the digital transition of work does not come at the expense of equity. As this transition continues, addressing uneven impacts will be crucial to safeguard wellbeing and equitable work environments.

Acknowledgments

The authors would like to thank all the respondents who participated in the survey and the individuals who helped distribute it.

Funding

This work was supported by the Research Foundation—Flanders (FWO) Grant No. G043522N.

Conflict of Interests

The authors declare no conflict of interests.

Data Availability

The data that has been used is confidential.

LLMs Disclosure

ChatGPT has been used for language polishing and generating code.

Supplementary Material

Supplementary material for this article is available online in the format provided by the author (unedited).

References

Aksoy, C. G., Barrero, J. M., Bloom, N., Davis, S. J., Dolls, M., & Zarate, P. (2022). Working from home around the world. *CESifo Forum*, 23(6), 38–41. <https://doi.org/10.2139/ssrn.4219442>

Alipour, J. V., Langer, C., & O'Kane, L. (2021). Is working from home here to stay? A look at 35 million job ads*. *CESifo Forum*, 22(6), 41–46.

Allam, Z., Nieuwenhuijsen, M., Chabaud, D., & Moreno, C. (2022). The 15-minute city offers a new framework for sustainability, liveability, and health. *The Lancet Planetary Health*, 6(3), e181–e183. [https://doi.org/10.1016/S2542-5196\(22\)00014-6](https://doi.org/10.1016/S2542-5196(22)00014-6)

Allen, T. D., Golden, T. D., & Shockley, K. M. (2015). How effective is telecommuting? Assessing the status of our scientific findings. *Psychological Science in the Public Interest*, 16(2), 40–68. <https://doi.org/10.1177/1529100615593273>

Anderson, A. J., Kaplan, S. A., & Vega, R. P. (2015). The impact of telework on emotional experience: When, and for whom, does telework improve daily affective well-being? *European Journal of Work and Organizational Psychology*, 24(6), 882–897. <https://doi.org/10.1080/1359432x.2014.966086>

Assal, E. M., Capéau, B., Decancq, K., Decoster, A., Kuypers, S., Vanderkelen, J., Vanheukelom, T., & Verbist, G. (2022). *Income inequality in Belgium: What we know and do not know* (BE-PARADIS Working Paper/BELSP0 22.1). KU Leuven; ULB; University of Antwerp.

Athanasiadou, C., & Theriou, G. (2021). Telework: Systematic literature review and future research agenda. *Heliyon*, 7(10), Article 08165. <https://doi.org/10.1016/j.heliyon.2021.e08165>

Audenaert, V. (2023). *Gezinsenquête 2021: De taakverdeling thuis. Gezinnen in Vlaanderen over wie welke gezinstaken op zich neemt en hoe tevreden ze zijn met de verdeling van de gezinstaken*. Vlaamse overheid. <https://www.departementzorg.be/nl/gezinsenquete-2021/gezinnen-vlaanderen-beeld>

Azimzadeh, S., & Sharghi, A. (2025). Work-from-home architecture: A systematic review of spatial challenges in telework environments. *Journal of Housing and the Built Environment*, 2025. <https://doi.org/10.1007/s10901-025-10235-9>

Balbontin, C., Hensher, D. A., & Beck, M. J. (2024). Relationship between commuting and non-commuting travel activity under the growing incidence of working from home and people's attitudes towards COVID-19. *Transportation*, 51, 2225–2251. <https://doi.org/10.1007/s11116-023-10403-2>

Beck, M. J., & Hensher, D. A. (2021). What might the changing incidence of working from home (WFH) tell us about future transport and land use agendas. *Transport Reviews*, 41(3), 257–261. <https://doi.org/10.1080/01441647.2020.1848141>

Beckel, J. L. O., & Fisher, G. G. (2022). Telework and worker health and well-being: A review and

recommendations for research and practice. *International Journal of Environmental Research and Public Health*, 19(7), Article 3879. <https://doi.org/10.3390/ijerph19073879>

Bertoni, M., Pasini, G., Pavese, C., & Pavese, C. (2021). *Remote working and mental health during the first wave of COVID-19 pandemic* (Discussion Paper No. 14773). IZA.

Budnitz, H., Tranos, E., & Chapman, L. (2020). Telecommuting and other trips: An English case study. *Journal of Transport Geography*, 85, Article 102713. <https://doi.org/10.1016/j.jtrangeo.2020.102713>

Castro-Trancón, N., Zuazua-Vega, M., Osca, A., Cifre, E., & García-Izquierdo, A. L. (2024). Effects of teleworking on wellbeing from a gender perspective: A systematic review. *Frontiers in Organizational Psychology*, 2. <https://doi.org/10.3389/forgp.2024.1360373>

Cedefop. (2020, December 18). Coronavirus and the European job market: how the pandemic is reshaping skills demand. *Cedefop News and Events*. <https://www.cedefop.europa.eu/en/news/coronavirus-and-european-job-market-how-pandemic-reshaping-skills-demand#group-details>

Chuang, Y. T., Chiang, H. L., & Lin, A. P. (2024). Information quality, work-family conflict, loneliness, and well-being in remote work settings. *Computers in Human Behavior*, 154, Article 108149. <https://doi.org/10.1016/j.chb.2024.108149>

Chung, H., & van der Lippe, T. (2020). Flexible working, work-life balance, and gender equality: Introduction. *Social Indicators Research*, 151(2), 365–381. <https://doi.org/10.1007/s11205-018-2025-x>

Clar-Novak, M. (2024). The gendered paradox of individualization in telework: Simultaneously helpful and harmful in the context of parenting. *Gender, Work and Organization*, 32(1), 330–350. <https://doi.org/10.1111/gwao.13155>

Çoban, S. (2022). Gender and telework: Work and family experiences of teleworking professional, middle-class, married women with children during the Covid-19 pandemic in Turkey. *Gender, Work and Organization*, 29(1), 241–255. <https://doi.org/10.1111/gwao.12684>

Dale, G., Wilson, H., & Tucker, M. (2024). What is healthy hybrid work? Exploring employee perceptions on well-being and hybrid work arrangements. *International Journal of Workplace Health Management*, 17(4), 335–352. <https://doi.org/10.1108/ijwhm-03-2024-0041>

De Vos, J., Le, H. T. K., & Kroesen, M. (2022). Does commute duration attenuate the effect of travel mode choice on commute satisfaction? *Travel Behaviour and Society*, 28, 13–21. <https://doi.org/10.1016/j.tbs.2022.02.004>

De Vos, J., Schwanen, T., van Acker, V., & Witlox, F. (2013). Travel and subjective well-being: A focus on findings, methods and future research needs. *Transport Reviews*, 33(4), 421–442. <https://doi.org/10.1080/01441647.2013.815665>

Delanoeije, J., & Verbruggen, M. (2020). Between-person and within-person effects of telework: A quasi-field experiment. *European Journal of Work and Organizational Psychology*, 29(6), 795–808. <https://doi.org/10.1080/1359432x.2020.1774557>

Deole, S. S., Deter, M., & Huang, Y. (2023). Home sweet home: Working from home and employee performance during the COVID-19 pandemic in the UK. *Labour Economics*, 80, Article 102295. <https://doi.org/10.1016/j.labeco.2022.102295>

Desjardins, C., Fortin, M., Ohana, M., & German, H. (2024). Women's double penalty during telework: A mixed method investigation of the gender effect of interruptions between work and childcare. *Group & Organization Management*, 50(4). <https://doi.org/10.1177/10596011241273336>

Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfaction with life scale. *Journal of Personality Assessment*, 49(1), 71–75.

Ettema, D., Gärling, T., Eriksson, L., Friman, M., Olsson, L. E., & Fujii, S. (2011). Satisfaction with travel and

subjective well-being: Development and test of a measurement tool. *Transportation Research Part F: Traffic Psychology and Behaviour*, 14(3), 167–175. <https://doi.org/10.1016/j.trf.2010.11.002>

Eurobarometer. (2020). *Attitudes towards the impact of digitisation and automation on daily life*. European Commission. <https://digital-strategy.ec.europa.eu/en/news/attitudes-towards-impact-digitisation-and-automation-daily-life>

Fonner, K. L., & Roloff, M. E. (2010). Why teleworkers are more satisfied with their jobs than are office-based workers: When less contact is beneficial. *Journal of Applied Communication Research*, 38(4), 336–361. <https://doi.org/10.1080/00909882.2010.513998>

Friman, M., Gärling, T., Ettema, D., & Olsson, L. E. (2017). How does travel affect emotional well-being and life satisfaction? *Transportation Research Part A: Policy and Practice*, 106, 170–180. <https://doi.org/10.1016/j.tra.2017.09.024>

Glackin, S., & Moglia, M. (2022). Working from home in Australian cities as a catalyst for place-making? *Journal of Urbanism*, 18(3), 393–418. <https://doi.org/10.1080/17549175.2022.2146157>

Gueguen, G., & Senik, C. (2021). *Adopting telework. The causal impact of working from home on subjective well-being in 2020*. HAL Open Science. <https://halshs.archives-ouvertes.fr/halshs-03455306>

Handy, S., & Thigpen, C. (2019). Commute quality and its implications for commute satisfaction: Exploring the role of mode, location, and other factors. *Travel Behaviour and Society*, 16, 241–248. <https://doi.org/10.1016/j.tbs.2018.03.001>

Heiden, M., Hallman, D. M., Svensson, M., Mathiassen, S. E., Svensson, S., & Bergström, G. (2023). Mismatch between actual and preferred extent of telework: Cross-sectional and prospective associations with well-being and burnout. *BMC Public Health*, 23(1), Article 1736. <https://doi.org/10.1186/s12889-023-16683-8>

Karjalainen, M. (2023). Gender and the blurring boundaries of work in the era of telework—A longitudinal study. *Sociology Compass*, 17(1), Article 13029. <https://doi.org/10.1111/soc4.13029>

Kim, J., Park, J. C., & Komarek, T. (2021). The impact of Mobile ICT on national productivity in developed and developing countries. *Information and Management*, 58(3), Article 103442. <https://doi.org/10.1016/j.im.2021.103442>

Lamote, S. (2025, June 4). *Tekort in kinderopvang raakt meer dan een op drie gezinnen*. De Tijd. <https://www.tijd.be/politiek-economie/belgie/vlaanderen/tekort-in-kinderopvang-raakt-meer-dan-een-op-driegezinnen/10609897.html#:~:text=37%20procent%20van%20de%20ouders,het%20personeel%20gevonden%20moet%20worden>

Lewandowski, P., Lipowska, K., & Smoter, M. (2022). *Working from home during a pandemic—A discrete choice experiment in Poland* (Discussion Paper No. 15251). IZA. <https://doi.org/10.2139/ssrn.4114827>

Lu, Z., & Zhuang, W. (2023). Can teleworking improve workers' job satisfaction? Exploring the roles of gender and emotional well-being. *Applied Research in Quality of Life*, 18(3), 1433–1452. <https://doi.org/10.1007/s11482-023-10145-4>

Lucas, K., Mattioli, G., Verlinghieri, E., & Guzman, A. (2016). Transport poverty and its adverse social consequences. *Proceedings of the Institution of Civil Engineers: Transport*, 169(6), 353–365. <https://doi.org/10.1680/jtran.15.00073>

Maheshwari, R., Van Acker, V., & Gerber, P. (2024). Commuting vs teleworking: How does it impact the relationship between commuting satisfaction and subjective well-being. *Transportation Research Part a-Policy and Practice*, 182, Article 104041. <https://doi.org/10.1016/j.tra.2024.104041>

Martin, A., Goryakin, Y., & Suhrcke, M. (2014). Does active commuting improve psychological wellbeing? Longitudinal evidence from eighteen waves of the British Household Panel Survey. *Preventive Medicine*, 69, 296–303. <https://doi.org/10.1016/j.ypmed.2014.08.023>

Mokhtarian, P. L., & Salomon, I. (1997). Modeling the desire to telecommute: The importance of attitudinal factors in behavioral models. *Transportation Research Part A: Policy and Practice*, 31(1), 35–50. [https://doi.org/10.1016/S0965-8564\(96\)00010-9](https://doi.org/10.1016/S0965-8564(96)00010-9)

Moreno, C., Allam, Z., Chabaud, D., Gall, C., & Pratlong, F. (2021). Introducing the “15-minute city”: Sustainability, resilience and place identity in future post-pandemic cities. *Smart Cities*, 4(1), 93–111. <https://doi.org/10.3390/smartcities>

Mouratidis, K. (2021). Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. *Cities*, 115, Article 103229. <https://doi.org/10.1016/j.cities.2021.103229>

Olsson, L. E., Gärling, T., Ettema, D., Friman, M., & Fujii, S. (2013). Happiness and satisfaction with work commute. *Social Indicators Research*, 111(1), 255–263. <https://doi.org/10.1007/s11205-012-0003-2>

One employee in three works from home. (2025a, March 26). *Statbel*. <https://statbel.fgov.be/en/themes/work-training/labour-market/working-home#news>

Peters, P., Den Dulk, L., & Van Der Lippe, T. (2009). The effects of time-spatial flexibility and new working conditions on employees' work-life balance: The Dutch case. *Community, Work & Family*, 12(3), 279–297.

Pliskin, N. (1997). The telecommuting paradox. *Information Technology & People*, 10(2), 164–172. <https://doi.org/10.1108/09593849710175002>

Provincies in cijfers. (2025a). *Rapport arbeidsmarkt*. <https://provincies.incijfers.be/dashboard/arbeidsmarkt/rapport-arbeidsmarkt>

Provincies in cijfers. (2025b). *Verplaatsingsgedrag*. <https://provincies.incijfers.be/dashboard/mobiliteit-en-verkeersveiligheid/verplaatsingsgedrag>

Ravalet, E., & Rérat, P. (2019). Teleworking: Decreasing mobility or increasing tolerance of commuting distances? *Built Environment*, 45(4), 582–602. <https://doi.org/10.2148/benv.45.4.582>

Rubin, O., Nikolaeva, A., & Nello-deakin, S. (2020). *What can we learn from the COVID-19 pandemic about how people experience working from home and commuting?* Department of Geography, Planning and International Development, University of Amsterdam. <https://urbanstudies.uva.nl/content/blog-series/covid-19-pandemic-working-from-home-and-commuting.html?cb>

Sardeshmukh, S. R., Sharma, D., & Golden, T. D. (2012). Impact of telework on exhaustion and job engagement: A job demands and job resources model. *New Technology, Work and Employment*, 27(3), 193–207. <https://doi.org/10.1111/j.1468-005X.2012.00284.x>

Silva, J. D. E., & Melo, P. C. (2018). Home telework, travel behavior, and land-use patterns: A path analysis of British single-worker households. *Journal of Transport and Land Use*, 11(1), 419–441. <https://doi.org/10.5198/jtlu.2018.1134>

Sostero, M., Milasi, S., Hurley, J., Fernandez-Macias, E., & Bisello, M. (2020). *Teleworkability and the COVID-19 crisis: a new digital divide?* JRC Publications Repository. <https://publications.jrc.ec.europa.eu/repository/handle/JRC121193>

St-Louis, E., Manaugh, K., Van Lierop, D., & El-Geneidy, A. (2014). The happy commuter: A comparison of commuter satisfaction across modes. *Transportation Research Part F: Traffic Psychology and Behaviour*, 26(PART A), 160–170. <https://doi.org/10.1016/j.trf.2014.07.004>

Structuur van de bevolking. (2025b, June 11). *Statbel*. <https://statbel.fgov.be/nl/themas/bevolking/structuur-van-de-bevolking>

Stutzer, A., & Frey, B. S. (2008). Stress that doesn't pay: The commuting paradox. *Scandinavian Journal of Economics*, 110(2), 339–366. <https://doi.org/10.1111/j.1467-9442.2008.00542.x>

Sullivan, C., & Lewis, S. (2001). Home-based telework, gender, and the synchronization of work and family: Perspectives of teleworkers and their co-residents. *Gender, Work & Organization*, 8(2), 123–145.

Telewerken. (2025a). *In cijfers: resultaten telewerk werkgeversbevraging2025*. <https://www.telewerken.be/werknemer/wettelijke-regelingen>

Telewerken. (2025b). *Wettelijke regelingen*. <https://www.telewerken.be/werknemer/wettelijke-regelingen>

Thompson, B. Y. (2019). The digital nomad lifestyle: (Remote) work/leisure balance, privilege, and constructed community. *International Journal of the Sociology of Leisure*, 2(1/2), 27–42. <https://doi.org/10.1007/s41978-018-00030-y>

Tremblay, D. G. (2002). Balancing work and family with telework? Organizational issues and challenges for women and managers. *Women in Management Review*, 17, 157–170. <https://doi.org/10.1108/09649420210425309>

Vander Elst, T., Verhoogen, R., Sercu, M., Van Den Broeck, A., Baillien, E., & Godderis, L. (2017). Not extent of telecommuting, but job characteristics as proximal predictors of work-related well-being. *Journal of Occupational and Environmental Medicine*, 59(10), e180–e186. <https://doi.org/10.1097/JOM.0000000000001132>

Versigghel, J., De Vos, J., & Witlox, F. (2025). Telework and commuting patterns. An empirical study of workers in Flanders, Belgium. *Journal of Urban Mobility*, 7, Article 100125. <https://doi.org/10.1016/j.urbmob.2025.100125>

Walls, M., & Safirova, E. (2004). *A review of the literature on telecommuting and its implications for vehicle travel and emissions* (Discussion Paper No. 04–44). Resources for the Future. <https://doi.org/10.22004/ag.econ.10492>

Wang, X., & Mokhtarian, P. L. (2024). Examining the treatment effect of teleworking on vehicle-miles driven: Applying an ordered probit selection model and incorporating the role of travel stress. *Transportation Research Part A: Policy and Practice*, 186, Article 104072. <https://doi.org/10.1016/j.tra.2024.104072>

Wöhner, F. (2022). Work flexibly, travel less? The impact of telework and flextime on mobility behavior in Switzerland. *Journal of Transport Geography*, 102, Article 103390. <https://doi.org/10.1016/j.jtrangeo.2022.103390>

Ye, R., & Titheridge, H. (2017). Satisfaction with the commute: The role of travel mode choice, built environment and attitudes. *Transportation Research Part D: Transport and Environment*, 52, 535–547. <https://doi.org/10.1016/j.trd.2016.06.011>

About the Authors

Jente Versigghel is a doctoral researcher at the Geography Department of Ghent University. Her research examines the effects of teleworking on travel and well-being.

Hannah Hook is a human geographer and professor of sustainable land use and transport planning at Aalto University. Her main research focus is on travel behavior, well-being, and equity, particularly how everyday travel shapes satisfaction, investigating attitudes, motivations, preferences, and experiences. She completed postdoctoral and doctoral studies at Ghent University.

Jonas De Vos is a professor of transport planning at the Bartlett School of Planning, University College London (UCL). He is currently co-editor-in-chief of *Transport Reviews* and chair of the World Society for Transport and Land Use Research (WSTLUR).

Frank Witlox is a senior full professor of economic geography and Head of the Department of Geography at Ghent University. He is also a visiting professor at the Department of Geography, University of Tartu. His research focuses mainly on travel behavior analysis and modelling.