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Abstract
Car‐dominated daily travel has caused many severe and urgent urban problems across the world, and such travel patterns
have been found to be related to the built environment. However, few existing studies have uncovered the nonlinear rela‐
tionship between the built environment and car dependency using a machine learning method, thus failing to provide
policymakers with nuanced evidence‐based guidance on reducing car dependency. Using data from Puget Sound regional
household travel surveys, this study analyzes the complicated relationship between car dependency and the built environ‐
ment using the gradient boost decision treemethod. The results show that people living in high‐density areas are less likely
to rely on private cars than those living in low‐density neighborhoods. Both threshold and nonlinear effects are observed
in the relationships between the built environment and car dependency. Increasing road density promotes car usage when
the road density is below 6 km/km2. However, the positive association between road density and car use is not observed
in areas with high road density. Increasing pedestrian‐oriented road density decreases the likelihood of using cars as the
main mode. Such a negative effect is most effective when the pedestrian‐oriented road density is over 14.5 km/km2. More
diverse land use also discourages people’s car use, probably because those areas are more likely to promote active modes.
Destination accessibility has an overall negative effect and a significant threshold effect on car dependency. These findings
can help urban planners formulate tailored land‐use interventions to reduce car dependency.
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1. Introduction

During the past several decades, car use has become a
severe problem across the world. For example, almost
half of the trips in European countries (e.g., Germany,
Switzerland, and Austria) are made by private car
(Buehler et al., 2017). The growth rate of car ownership
in China has also been dramatic, which is similar to the

historical process of developed countries (International
Monetary Fund, 2005). Car‐dependent issues in the
U.S. are even worse. The rate of car ownership in
the U.S. ranked first in the world, significantly higher
than that in other countries (Pucher & Lefevre, 1996).
Low density and urban sprawl in the U.S. have led to
severe car dependency issues (Gilbert & Perl, 2011) since
facilities and services (e.g., healthcare, and shopping
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centers) are sparsely distributed and cannot be reached
and served efficiently by public transit and/or active
modes. The extensive use of cars across the world has
resulted in severe problems, such as traffic congestion,
air pollution, and noise pollution (McIntosh et al., 2014).
Understanding what contributes to the decline in car
dependency can help planners reduce the detrimental
effects of car use.

After “car dependency” was first introduced by
Newman and Kenworthy (1989a, 1989b) in a study
analyzing the relationship between travel patterns and
land use factors from 32 global cities, extensive stud‐
ies have discussed the influencing factors on car depen‐
dency. Socio‐demographic characteristics can influence
people’s car use, such as age, gender, income level, edu‐
cation, and employment status (Naess, 2014). Manaugh
et al. (2010) found that the number of automobile trips
is positively associated with people’s income level in
Montreal, Canada. Another research in Detroit reached
a similar finding and further found that education and
employment status also has a positive effect on car use.
Peoplewho have full‐time jobs aremore likely to use cars
compared to those unemployed. How the built environ‐
ment affects car use has also been extensively discussed
in previous studies (Ding & Cao, 2019; Pinjari et al.,
2011).Most existing studies concluded that built environ‐
ments such as density, design, and destination accessibil‐
ity have significant effects on car use. High density can
lead to less car dependency (Van Acker & Witlox, 2010).
Housing density has a negative impact on car depen‐
dency (Hong, 2017). Evidence from California witnessed
that a decrease in density below 1,000 housing units per
square mile is associated with a 5.5% increase in fuel
consumption per household and a 4.8% increase in vehi‐
cle kilometers traveled (VKT) per capita (Zegras, 2010).
Another study in Flanders, Belgium supported this find‐
ing that higher density increases the use of other modes,
such as walking, cycling, and public transit (De Vos &
Witlox, 2013). Car ownership is negatively associated
with both residential density and employment density
(Cervero & Arrington, 2008; Holtzclaw et al., 2002; Li
et al., 2010). People living in areaswithmore diverse land
uses are less likely to own a car (Potoglou & Kanaroglou,
2008). Those living in neighborhoods with pedestrian‐
friendly streets have fewer cars since these streets pro‐
mote the use of non‐motorized travel modes (e.g., walk‐
ing, cycling; Zuo et al., 2018). Good access to transit ser‐
vices may encourage people to travel by public transit
and thus decreases the possibility to use cars (Mavoa
et al., 2012; McIntosh et al., 2014).

While most of the existing studies assumed a lin‐
ear association between the built environment and car
dependency (Van Acker & Witlox, 2010; Zegras, 2010),
some researchers tried to uncover the nonlinear rela‐
tionships between car use and urban form using expo‐
nential functions. Theoretical reasons for such nonlinear
effects can be related to location theory and threshold
theory for goods and services (Eldridge & Jones, 1991).

For example, Newman and Kenworthy (1989a, 1989b,
1991, 2006, 2011a, 2011b) found that car use decreases
exponentially with population density increasing by ana‐
lyzing a group of global cities. The exponential func‐
tion used by Newman and Kenworthy is one of the
first attempts to uncover the nonlinear effects between
car use and urban density. Exponential functions have
been used in many previous studies to introduce non‐
linearity (Holtzclaw et al., 2002), with the advantage
of being smooth and differentiable and being able to
derive the backpropagation algorithm. Unlike exponen‐
tial function as a traditional statistical method that fol‐
lows a constrained statistical assumption and is usu‐
ally pre‐defined, machine learning methods, such as the
XGBoost model used in this research, are data‐driven
and are not statistically constrained, which will provide
more sophisticated results.Many other researchers have
also attempted to uncover the nonlinear built effects on
travel patterns using machine learning methods, includ‐
ing driving distance (Ding et al., 2018), metro ridership
(Ding et al., 2019), usage of shared mobility services
(Cheng et al., 2023; Cheng,Wang, et al., 2022; Jin, Cheng,
Zhang, et al., 2022), and public transit ridership (Chen
et al., 2021). Relaxing the assumption of linearity using
a machine learning method has several advantages in
travel behavior analysis (Cheng et al., 2019; Liu et al.,
2021; Xu et al., 2021; Zhang et al., 2020). First, former
studies that assume linear relationships can only uncover
a negative or positive effect of the influencing factors
on travel behavior (Boarnet et al., 2008; Van Acker &
Witlox, 2010; Zegras, 2010). The nonlinear relationships
can illustrate a more complex relationship instead of a
monotonous trend or effect. Moreover, the nonlinear
relationships captured bymachine learningmethods can
present more accurate estimates of the effects of influ‐
encing factors within different intervals of associated
factors on travel behavior, which can help policymak‐
ers make targeted policies. This study, taking the Puget
Sound Region, U.S, uses a machine learning method to
explore the nonlinear associations between the built
environment and car dependency.

The rest of this article is as follows. Section 2 intro‐
duces the data and variables. Section 3 explains how
the gradient boost decision tree (GBDT) can be used to
analyze nonlinear relationships. Section 4 discusses the
nonlinear effects of the built environment on car depen‐
dency. Section 5 summarizes this research and proposes
future research avenues.

2. Data and Variables

This study is based on the Puget Sound Region Travel
Surveys from 2017 to 2021. The Puget Sound region
(Figure 1) is in the U.S. state of Washington and consists
of King, Kitsap, Pierce, and Snohomish counties, with the
city of Seattle located in the region. The region includes
82 cities and towns with a total of over four million peo‐
ple and 1.5 million households (Figure 1a). As illustrated
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(a) Total households (b) Sampled households (c) Sampling rates

Figure 1. Spatial distribution of total households, sampled households, and sampling rates in the Puget Sound Region.

in Figure 2, this region has multiple types of neighbor‐
hoods, such as high‐density neighborhoods in down‐
town areas of Seattle, and low‐density neighborhoods
in Parkwood, Kitsap County. The surveys collected socio‐
demographic and geographic information about individ‐
uals and households, as well as detailed travel informa‐
tion. There are 136,079 trips involved in this research,
which contains 8,287 households and 14,112 individuals.
Travel information includes the number of trips, travel
time, and travel mode. The travel surveys aim to help
local and regional planning agencies prioritize transporta‐
tion and land‐use improvements. It should be noted that
the Puget Sound Region Travel Survey uses a stratified
address‐based random sampling method, which com‐
bines proportional geographic sampling and compen‐
satory sampling based on predicted response rates and
targeted oversampling. Low‐income households, those
with no vehicles, and non‐auto commuters are more tar‐
geted for policy goals (Puget Sound Regional Council,
2021). As illustrated in Figure 1c, those census tracts
that have high sampling rates are located in the city
of Seattle and Bellevue, two of the largest cities in the
region. Since this research focuses on explaining the rela‐
tionships between built environment variables and car
use rather than on describing car use per se, these dif‐

ferences are not expected to materially affect the results
(Babbie, 2009).

The dependent variable is whether a car is used as
the main mode during one trip. It is a dummy variable,
with one indicating that a car is used as the main mode,
while zero otherwise. Among all trips surveyed, 63.47%
of the trips use a car as the main mode while 36.53%
use other modes. The explanatory variable is built envi‐
ronment attributes while the control variables include
individuals’ socioeconomic and demographic charac‐
teristics, household characteristics, and trip purposes
(Table 1). While characteristics of individuals and house‐
holds, as well as trip purposes, are sourced from the
travel survey, built environment characteristics are col‐
lected from the U.S. Environmental Protection Agency’s
Smart Location Dataset (SLD), OpenStreetMap, and GTFS
dataset. The SLD can be downloaded using the following
link: https://www.epa.gov/smartgrowth/smart‐location‐
database‐technical‐documentation‐and‐user‐guide. The
SLD data are all aggregated at the census block level with
United States customary units (i.e., miles). Since the geo‐
graphic information of the Puget Travel Survey is based
on the census tract level, the SLD‐sourced variables are
conversed to the census tract level using the weighted
average values with SI units (i.e., kilometers).

(a) High-density area

(Downtown area of Sea le)

(b) Median-density area

(Evere , Snohomish County)

(c) Low-density area

(Parkwood, Kitsap County)

Figure 2. Representative photos of high‐, median‐, and low‐density neighborhoods in the Puget Sound Region.
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Table 1. Variable definition and descriptive statistics.

Variable Frequency Percentage

Dependent variables
Whether or not a car is used as the main mode during one trip

Yes ( = 1) 86,376 63.47%
No ( = 0) 49,703 36.53%

Independent variables
Individual’s socioeconomic and demographic characteristics (N = 14,112)

Age
16–34 4,440 31.46%
35–54 4,400 31.18%
55+ 5,272 37.36%

Gender
Male 6,808 48.24%
Not Male 7,304 51.76%

Education (Bachelor’s degree or higher)
Yes 8,684 61.54%
No 6,808 48.24%

License (Valid driver’s license ownership)
Yes 11,668 82.68%
No 2,444 17.32%

Household characteristics (N = 8,287)
Household size

1 3,048 36.78%
2 3,336 40.26%
3 957 11.55%
4+ 946 11.42%

Household income
Under $49,999 2,066 24.93%
$50,000–$99,999 2,359 28.47%
$100,000 or more 3,336 40.26%
Prefer not to answer 526 6.35%

Vehicle ownership
0 1,222 14.75%
1 vehicle 3,796 45.81%
2 or more vehicles 3,269 39.45%

Residential type
Single‐family house 3,234 39.02%
Apartment/condo/others 5,053 60.98%

House ownership
Yes 4,170 50.32%
No 4,117 49.68%
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Table 1. (Cont.) Variable definition and descriptive statistics.

Variable Frequency Percentage

Trip purpose (N = 136,079)
Trip purpose of origins *

Home 44,234 32.51%
Work 15,156 11.14%
Work‐related 5,338 3.92%
School 2,981 2.19%
Meal 11,244 8.26%
Shop 14,744 10.83%
Social/recreation 19,708 14.48%
Escort 7,323 5.38%
Change mode 773 0.57%
Errand/other 13,892 10.21%
Non‐response 686 0.50%

Trip purpose of destinations *
Home 43,879 32.25%
Work 15,106 11.10%
Work‐related 5,383 3.96%
School 2,991 2.20%
Meal 11,265 8.28%
Shop 14,775 10.86%
Social/recreation 20,278 14.90%
Escort 7,345 5.40%
Change mode 780 0.57%
Errand/other 13,783 10.13%
Non‐response 494 0.36%

Built environment variables (Census Tract level) Mean Min Max Std
Density

Residential density (103 housing units/km2) ** 0.97 0.001 15.82 1.49
Employment density (103 jobs/km2) *** 1.50 0.00 124.36 6.90

Design
Road density (km/km2) **** 0.65 0.00 12.36 1.37
Intersection density (counts/km2) **** 1.07 0.00 68.97 4.37
Pedestrian‐oriented road density (km/km2) ***** 9.27 0.32 24.82 5.02
Building density (km2/km2) **** 0.16 0.00 0.49 0.08

Diversity
Land use mix ****** 0.70 0.23 0.96 0.11

Destination accessibility
Transit service frequency (counts/km2) ******* 82 0.00 4567 372
103 jobs reached by public transit within 45 minutes ******** 130.19 0.00 1121.77 194.23

Notes: * Trip purpose of origins (home) and destinations (work) means the respondent leaves home for the workplace. ** Pedestrian‐
oriented road density is network density in terms of facility kilometers of pedestrian‐oriented links per square kilometer. It is sourced
from D3apo in the SLD. Pedestrian‐oriented facilities refer to any link having a low speed and pedestrian is permitted. *** Residential
density is sourced from D1a in the SLD, which is the gross residential density (Housing Units/km2) on unprotected land. **** Road den‐
sity, intersection density, and building density variables are sourced from OpenStreetMap. ***** Employment density is sourced from
D1c in the SLD, which is the gross employment density (jobs/km2) on unprotected land. ****** Since land use data are not accessible
for this region, employment entropy is used to represent the land use mix (Ozbilen et al., 2021; U.S. Department of Transportation,
2015). Employment entropy is sourced from D2b_E8Mix based on eight employment categories, including retail, office, service, indus‐
trial, entertainment, education, healthcare, and public administration. The entropy mixture of employment types can be calculated as:
H = −(∑n

i = 1 pi ∗ ln(pi))/ ln(n), where pi represents the share of each employment category i; and n is the number of employment types
in each census tract. The value ranges from 0 to 1. The larger the value, the moremixed the job types are. A higher employment entropy
can be assumed to represent more diverse land uses. ******* Transit service frequency per square kilometer is sourced fromD4d in the
SLD, which calculates the frequency of public transit services for each transit route during the weekday evening peak hour (from 4:00
PM to 7:00 PM). Transit stops within 0.4 kilometers of crow‐fly distance from the boundary of the census block group were identified.
******** Jobs reached by public transit within 45 minutes variable is sourced from D5br in the SLD. It is distance decay weighted, which
considers walking network travel time and GTFS schedules simulation.
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3. Methodology

3.1. XGBoost Model

The GBDT method is a tree‐based ensemble machine
learning method (Friedman, 2001). As illustrated in
Figure 3, multiple decision trees are built iteratively, and
the outcomes of all trees are then combined to con‐
struct the final model. Each single tree aims to min‐
imize a loss function, with more weights assigned to
caseswith awrong prediction. The GBDTmethod has the
advantage of excellent prediction power, making it one
of the most widely recognized machine learning meth‐
ods. The XGBoost is an advanced tree learning algorithm
(Chen&Guestrin, 2016), which is able to dealwith sparse
and parallel data with a high computation speed. These
improvements have made XGBoost a reputational and
popular machine learning method in data science. While
XGBRegressor is used for continuous outcome variables,
XGBClassifier is used for categorical outcome variables.

For each tree, an outcome (i.e., whether a car is used
as the main mode during a trip) yi exists. The XGBoost
model is built based on the features and K additive
functions:

̂yi =
K

∑
k = 1

fk (Xi) , fk ∈ F (1)

where fk is a tree with leaf weights, and F indicates the
space of decision trees. For each tree, the aim is to mini‐
mize the following:

L(𝜙) = ∑
i
l ( ̂yi, yi) +∑

k
Ω (fk) (2)

where l is the difference between ̂yi and yi. Ω is a term
that penalizes the complexity of the model.

Ω (fk) = 𝛾T +
1
2
𝜆 ‖𝜔i‖ (3)

𝜔i = −
∑i∈ Ij

𝜕2
ŷ (t−1)

l (yi, ŷ
(t−1))

∑i∈ Ij
𝜕2
ŷ (t−1)

l (yi, ŷ
(t−1)) + 𝜆

(4)

where T indicates howmany leave nodes in the tree, and
𝜔i represents the score of the i th leaf, and 𝛾 and 𝜆 repre‐
sent regularization parameters.

3.2. Interpretation of Results of the XGBoost

Explanatory variables are iteratively chosen randomly
to construct a single decision tree in XGBoost. Relative
importance is related to how many times a variable
is selected to construct the model (Friedman, 2001).
Relative importance is rescaled, the sum of which is one.
Higher relative importancemeans a greater contribution
of the variables. The relative importance of variable xi
can be obtained as follows:

I2xi =
1
t

t

∑
k = 1

I2xi (Tk) (5)

I2xi (Tk) =
J

∑
j = 1

dj (6)

where J is the number of leaves in each tree; k is the num‐
ber of additive trees; t is the number of iterations; Tk is
the k th tree function; dj indicates the improvement in the
square error term by making the j th split based on the
variable xi.

How the outcome is influenced by independent vari‐
ables can be illustrated by partial dependence plots (Tu
et al., 2021). The x‐axis represents the data distribution
of the independent variable (Cheng et al., 2020). The par‐
tial dependence of F(x) on xS can be defined as follows:

FxS (xS) = ExC [F (xS, xC)] = ∫ F (xS, xC) P (xC) dxC (7)

FxS (xS) =
1
n

n

∑
i = 1

F (xS, x i
C) (8)

where xS are the features of which we want to estimate
specific effects on car dependency and xC are other vari‐
ables; P (xC) is the probability density of xC; n represents
the number of samples.

Python “XGBoost” package is used tomodel the data.
Model parameters are important for XGBoost, including
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…

…

…Result 1 Result 2 Final Result

Tree 1 T
1
(x

i
) Tree 2 T

2
(x

i
)

f
1
(x

i
)

Tree n T
t
(x

i
)

f
2
x
i

( ) f
t
x
i

( )

Residual Residual

Figure 3. Schematic diagram of the GBDT method. Source: Authors based on Jin, Cheng, Liu, et al. (2022, p. 54).
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the number of trees (n_estimators), shrinkage coeffi‐
cient of each tree (learning_rate), and tree complexity
(max_depth). Five‐fold cross‐validation was applied to
search for optimum parameter values until the smallest
F1 score occurs. Finally, the n_estimators, learning_rate,
andmax_depthwas set as 200, 0.3, and 5 respectively for
the model. To further help readers have a better under‐
standing of themodel performances of both themachine
learning method and the binary regression model, we
provide a table that illustratesmore sophisticated perfor‐
mancemetrics (i.e., precision, recall, F1_score, accuracy)
for classification results. How these metrics can be calcu‐
lated is illustrated from Equations 9 to 12, where TP indi‐
cates the correctly predicted positive class outcome of
themodel, TN demonstrates the correctly predicted neg‐
ative class outcome, FP represents the incorrectly pre‐
dicted positive class outcome, FN showing the incorrectly
predicted negative class outcome. Precision is the rate
of total correctly predicted instances of a class over total
instances predicted as that class. Recall is the rate of total
correctly predicted instances of a class over the total
actual number of instances of that class. Accuracy is the
rate of correctly predicted instances over the total num‐
ber of instances. Accuracy represents a biased tendency
towards the majority class in the imbalanced dataset
as most of the data are from that class. Precision and
recall can only illustrate the performance of each class.
F1 score considers both values of precision and recall,
and thus is regarded as a better representative model
performance metric for the classification model. As illus‐
trated in Table 2, all four model performance metrics
of the XGBoost model are better than those of binary
regression models.

Precision = TP
TP + FP (9)

Recall = TP
TP + FN (10)

F1_score = 2 × Precision × Recall
Precision + Recall (11)

Accuracy = TN + TP
TN + TP + FP + FN (12)

4. Results

4.1. Relative Importance of Independent Variables

Higher relative importancemeans a greater contribution
of the variables. Regarding the average relative impor‐
tance of different factor categories, household charac‐
teristics have the highest average relative importance,
followed by destination accessibility and trip purpose
(Table 3). In terms of the relative contribution of single
variables, vehicle ownership is the most important vari‐
able, accounting for 33.27%. This is reasonable since peo‐
ple are more likely to use cars as their main travel mode
when they have more cars in households (Buehler, 2011;
Van Eenoo et al., 2022). Except for the highest contribu‐
tion of vehicle ownership, the built environment has a
higher average relative importance than individuals’ and
household socioeconomic and demographic character‐
istics. Some researchers have generally acknowledged
the importance of socio‐demographic characteristics in
people’s travel choices (e.g., Lanzendorf, 2010; Singh
et al., 2018; Stead, 2001), such as the formulation of
households and life domains. They claimed that individu‐
als’ travel behaviors are significantly influenced by their
age, gender, and employment status. Others reached
different findings that urban design and transportation
infrastructure have a highly significant influence on car
use, even after the correction for socio‐economic effects
(Holtzclaw et al., 2002; Lewis, 2018). This research aligns
with the latter conclusion, which provides new insight
into understanding the importance of the built environ‐
ment on car dependency.

For built environment factors, destination accessibil‐
ity variables have the highest relative importance, fol‐
lowed by design variables. The diversity variable has the
lowest relative importance. In terms of single built envi‐
ronment variables, transit service frequency has the high‐
est relative importance (12.03%), followedbypedestrian‐
oriented road density (7.74%). This is not surprising since
transit service frequency may play a more important
role in promoting people to use public transit while
pedestrian‐oriented road density also encourages peo‐
ple to take more active modes.

Table 2. Performance metrics of XGBoost and binary regression models.

Recall Precision F1 score

Using car as a main mode XGBoost 0.81 0.88 0.84
Binary regression 0.74 0.85 0.79

Not using a car as a main mode XGBoost 0.76 0.64 0.69
Binary regression 0.64 0.48 0.55

Accuracy XGBoost 0.79
Binary regression 0.71
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Table 3. Relative importance of independent variables.

Variable Relative importance (%) Average relative importance (%)

Individual’s socioeconomic and demographic characteristics
Age 1.74 2.32
Gender 1.77
Education 3.47
Employment 2.15
License 2.49

Household characteristics
Household size 2.27 8.46
Household income 2.21
Vehicle ownership 33.27
Residential type 2.38
House ownership 2.15

Trip purpose
Trip purpose of origins 4.37 4.55
Trip purpose of destinations 4.72

Built environment variables
Density

Residential density (103 housing units/km2) 2.70 2.40
Employment density (103 jobs/km) 2.51
Building density (km2/km2) 2.00

Design
Road density (km/km2) 2.31 4.12
Intersection density (counts/km2) 2.30
Pedestrian‐oriented road density (km/km2) 7.74

Diversity
Land use mix 2.07 2.07

Destination accessibility
Transit service frequency 12.03 7.69
Jobs reached by public transit within 45 minutes 3.35

4.2. Nonlinear Effects of the Built Environment Factors
on Car Dependency

Partial dependence plots (Figures 4, 5, 6, and 7) are used
to visualize the marginal effects of the built environment
factors on car dependency (Tu et al., 2021). The x‐axis
presents the distributions of the built environment vari‐
ables, and the x‐axis presents the probability of using
a car as the main mode. As illustrated in Figure 4a, car
dependency is positively associated with residential den‐
sity when the residential density is low. Such a positive
effect turns into a negative onewhen the population den‐
sity is high. Both high residential density and employ‐
ment density will decrease people’s car dependency,
which aligns with previous research (Chatman, 2013;
Newman & Kenworthy, 1989a, 1989b; Zegras, 2010).
Increasing building density can also decrease people’s
car dependency. Cervero and Arrington (2008) found
that there is a decline in car ownership as residential den‐
sity increases. These neighborhoods may be equipped
with more public services (i.e., healthcare, shopping cen‐

ter, and educational institutes), so that people may not
need to drive a long distance to reach these public facil‐
ities. Moreover, densely populated neighborhoods are
more likely to have more transportation facilities (e.g.,
buses, rails, shared services) so that people may have
other travel options instead of car use. A significant
threshold effect is observedwhen the population density
is over 7,000 housing units per square kilometer. A sig‐
nificant decline is observed in the curve for employment
density when the value is below 1,000 jobs. A similar
threshold effect is also witnessed for the curve of build‐
ing density. Newman and Kenworthy (2006) also found
a threshold of the urban intensity (residents and jobs) at
around 3,500 per square kilometer where car use signifi‐
cantly decreased. They further explained that below the
threshold density of residents and jobs, the physical con‐
straints of distance and time enforce car use as the norm.

Design variables have nonlinear effects on car depen‐
dency (Figure 5). The probability of using a car as the
main mode increase continuously when the road den‐
sity is below 6 km/km2, afterward, the curve remains
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Figure 4. Nonlinear relationship between density variables and car dependency. Note: Y‐axes represent the probability of
using a car as the main mode.

unaffected. An efficient road network will promote car
use. The positive association between road density and
car use does not exist in areas with high road den‐
sity, probably because these areas are more likely to be
equipped with sufficient transportation infrastructures,
such as public transit services (e.g., bus stops and metro
stations) and shared mobility services (e.g., bike‐sharing,
ridesourcing). Car dependency is positively associated
with intersection densitywhen the intersection density is
below 18. After the intersection density exceeds 38, the
curve drops slightly and remains unchanged. Increased
intersection density when the value is lowmeans a good
road network may facilitate car use. However, extremely
high intersection density may be often accompanied by
heavy traffic lights that may reduce people’s willingness
to drive. Increasing pedestrian‐oriented road density
decreases car dependency. This is not surprising since
a high pedestrian‐oriented road density can promote
active travel modes, which are alternative options for car
use. This research further found that the most effective
range of pedestrian‐oriented road density to decrease

car use is 14.5 km/km2, which can provide an evidence‐
based policy for local government and urban planners.

Car dependency has a positive association with land
use mix in neighborhoods with a relatively low land use
mix and a negative association in areas with highlymixed
land use (Figure 6). Our finding indicates that areas with
highly mixed land use are less likely to use cars as the
main mode. This is probably because diverse land use
promotes the use of active modes (e.g., walking, cycling;
Cheng, Jin, et al., 2022), which, in turn, will decrease
the use of private cars. Such restraint is not observed in
areas with relatively lower land usemix. A similar finding
was reached by Cervero (1996), who found that people
are more likely to travel by transit, foot, or bicycle when
mixed land development within several blocks. Beyond
this distance, mixed‐use activities appear to induce auto
use since automobiles can efficiently link work and shop‐
ping activities.

Destination accessibility has an overall negative
effect on car dependency (Figure 7). This is consistent
with previous studies (Wiersma et al., 2017) that higher
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public transit accessibility increases the possibility of
public transit use, and in turn, reduces car use. A sig‐
nificant threshold effect is observed for both transit ser‐
vice frequency and jobs reached by public transit. Car
dependency witnesses a dramatic decline when the tran‐
sit service frequency is below 300 per kilometer, after‐
ward, the curve remains unaffected. This may suggest
that people’s demand for public transit services is sat‐
isfied when the transit frequency per square kilometer
is 300. Further increasing transit frequency may not be
able to decrease car dependency significantly. A similar
pattern is also observed for job accessibility. Areas with
high job accessibility are favored by public transit more.
One explanation is that these areas can provide enough
demand that can well maintain the efficiency of public
transit systems. Moreover, these areas have high com‐
muting demand, and car use is normally restricted to
avoid severe congestion, such as high parking costs.

5. Conclusions

The extensive use of private cars has caused many prob‐
lems for society. Reducing car dependency and thus
relieving the severe issues caused by car dependency
has become one of the key objectives of transportation
development and land use interventions. Many previous
studies have confirmed that compact development and
transit‐oriented development could be effective strate‐
gies to reduce car use and lower the externalities of car
dependency (Saeidizand et al., 2022). How to implement
efficient planning policies is vital for policymakers and
transportation planners. This study analyzed the non‐
linear relationship between the built environment and
car dependency using a machine learning method, tak‐
ing Puget Sound Region as the case area. Results show
that except for the highest contribution of vehicle own‐
ership, the built environment has a higher average rel‐

ative importance than individuals’ and household socio‐
economic and demographic characteristics. This differs
from someprevious studies, suggesting that theway peo‐
ple travel is strongly affected by individuals’ age, gender,
income, and employment status (Boussauw & Witlox,
2011). The finding also provides new evidence to further
support that built environment factors have more signif‐
icant impacts on car use (Holtzclaw et al., 2002; Lewis,
2018). For built environment factors, destination acces‐
sibility variables have the highest relative importance,
followed by design variables. The overall effects of the
built environment factors on car dependency are consis‐
tent with previous studies (Ding & Cao, 2019; Newman&
Kenworthy, 1989a, 1989b; Pinjari et al., 2011). For exam‐
ple, high density leads to low car dependency. Sufficient
public transit services and high public transit accessibil‐
ity can decrease the possibility of using a car as the main
mode of a trip. This study further found that built envi‐
ronment factors have significant nonlinear and thresh‐
old effects on car dependency, which also provides new
insight into the previous nonlinearity studies using the
exponential function method. Moreover, the nonlinear
relationship captured using a machine learning method
releases the pre‐defined statistical assumptions that will
gain more sophisticated results. This research uncovered
that the effect of a built environment variable is only
effective within specific intervals of this attribute, which
also provides evidence‐based guidance for nuanced land
use interventions, at least for the government of the
Puget Sound Region.

Our results will be useful to provide policy implica‐
tions for Puget Sound Region to reduce car dependency.
First, both high residential density and employment
density can lead to low car dependency, which comes
with no surprise to further support population densifi‐
cation and increasing employment opportunities near
the neighborhoods can reduce people’s car use. Second,
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an efficient road network and pedestrian‐friendly street
design are helpful to reduce car dependency. An effec‐
tive road network can encourage people to use shared
mobility services more (e.g., bike‐sharing, ridesourcing)
based on previous studies (e.g., Cheng, Jin, et al., 2022;
Jin, Cheng, Zhang, et al., 2022). High pedestrian‐oriented
road density can also encourage active travel modes,
which in turn, reduce car use. Third, good access to pub‐
lic transit services can increase people’s use of public
transit services and decrease people’s car use. Increasing
density (i.e., population density, employment density,
and building density) can reduce people’s car use, which
is a valuable strategy for urban planning. However, we
should also acknowledge that it is not easy to implement
densification since it is faced with challenges for some
cities to increase density. Promoting road design and
increasing public transit services can bemuchmore oper‐
ational ways to reduce car dependency. This research fur‐
ther found that the negative association between design
and destination accessibility variables and car depen‐
dency is effective when the values of built environment
variables are within a specific range. These can provide
evidence‐based guidelines to help policymakers to use
limited resources to reduce car dependency through tar‐
geted strategies.

The study has several limitations, which promote
future research agendas. First, the built environmentmay
have not only a direct impact on travel behavior but also
an indirect influence through residential self‐selection,
which was not considered in this research. Second, the
nonlinear relationships between the built environment
and car dependency are analyzed only in the Puget Sound
Region, validated evidence from other case areas should
be provided to test the generalizability of our findings.
Nonetheless, this study examines how the built environ‐
ment affects car dependency, which would help to sup‐
port targeted and nuanced planning policies to encour‐
age sustainable transportation systems.
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