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Abstract

The Sky View Factor (SVF) is a dimension-reduced representation of urban form and one of the major variables in radiation
models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing
fisheye photographs or creating a digital 3D city or elevation model of the environment. Such techniques have previously
been limited due to a lack of imagery or lack of full scale detailed models of urban areas. We developed a web based tool
that automatically generates synthetic hemispherical fisheye views from Google Earth at arbitrary spatial resolution and
calculates the corresponding SVFs through equiangular projection. SVF results were validated using Google Maps Street
View and compared to results from other SVF calculation tools. We generated 5-meter resolution SVF maps for two neigh-
borhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and
vegetation. To demonstrate the utility of our synthetic fisheye approach for heat stress applications, we automated a ra-
diation model to generate outdoor thermal comfort maps for Arizona State University’s Tempe campus for a hot summer
day using synthetic fisheye photos and on-site meteorological data. Model output was tested against mobile transect mea-
surements of the six-directional radiant flux density. Based on the thermal comfort maps, we implemented a pedestrian
routing algorithm that is optimized for distance and thermal comfort preferences. Our synthetic fisheye approach can help
planners assess urban design and tree planting strategies to maximize thermal comfort outcomes and can support heat
hazard mitigation in urban areas.
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1. Introduction lic health (National Oceanic and Atmospheric Adminis-

tration [NOAA], 2015). Exposure to extreme heat is ex-
Heat is the leading cause of weather-related mortal- pected to increase in the future, as rapid urbanization
ity in the U.S and poses a significant threat to pub- continues and heat waves are projected to become more
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intense, more frequent, and longer lasting (Jones et al.,
2015). Past research has shown that daytime heat can
be reduced through microclimate-responsive urban de-
sign that acknowledges the cooling potential of urban
form and vegetation (Erell, Pearlmutter, & Williamson,
2012; Lenzholzer & Brown, 2016). Dense urban forms
can create local cool islands during the day and are par-
ticularly effective at mitigating heat in hot desert envi-
ronments where water is scarce (Middel, Hab, Brazel,
Martin, & Guhathakurta, 2014; Pearlmutter, Bitan, &
Berliner, 1999).

Heat is most commonly expressed as air temper-
ature, but temperature alone is not a comprehensive
indicator of outdoor thermal comfort or stress. Ther-
mal comfort is influenced by numerous environmental
factors, including temperature, radiation, humidity, and
wind speed; and personal factors, such as clothing and
activity level (Ng & Cheng, 2012; Nikolopoulou & Lyk-
oudis, 2006; Vanos, Warland, Gillespie, & Kenny, 2010).
In outdoor spaces, radiation is one of the most impor-
tant variables affecting thermal comfort; perceived ther-
mal comfort can vary several degrees in the shade and
sun (Mayer & Hoppe, 1987; Middel, Selover, Hagen, &
Chhetri, 2016). Thermal conditions in urban areas vary
widely due to complex shading patterns from buildings
and trees that determine solar access at the pedestrian
level. Therefore, air temperature maps fail to accurately
represent the significant variation of thermal conditions
in built environments.

In urban climate research, the Sky View Factor (SVF)
has been widely used as approximation of the 3D urban
geometry to assess the urban heat island (UHI) and long-
wave radiative heat loss in cities at night (Brandsma &
Wolters, 2012; Gal, Lindberg, & Unger, 2009; Oke, 1981;
Unger, 2004). SVF is defined as the fraction of visible sky
on a hemisphere and ranges from zero to one, denoting
the ratio of the radiation received (emitted) by a planar
surface to the radiation emitted (received) by the entire
hemisphere (Johnson & Watson, 1984). SVF is relevant
to human thermal comfort, as it affects Mean Radiant
Temperature (MRT), a synthetic parameter that summa-
rizes the direct and reflected short and longwave radi-
ation fluxes a human body is exposed to. MRT is one
of the most important meteorological variables in the
assessment of thermal comfort and the basis for many
human thermal comfort indices (Johansson, Thorsson,
Emmanuel, & Kriiger, 2014; Lee, Holst, & Mayer, 2013;
Thorsson, Lindberg, Eliasson, & Holmer, 2007).

Numerous models have been developed to calculate
SVF and MRT in urban settings at different spatial scales
and with varying data requirements. Matzarakis, Rutz
and Mayer (2007, 2010) developed RayMan to model
SVF and MRT from hemispherical photos and meteoro-
logical observations. The model has been shown to per-
form reasonably well in homogeneous urban environ-
ments (Lee & Mayer, 2016), yet it is limited to a single
point in space. The SkyHelios model (Matzarakis & Ma-
tuschek, 2011) simulates continuous SVFs for small ur-

ban areas, but requires a geometric obstacle file. More
recently, studies have presented continuous SVF calcu-
lations using 3D city models (Chen et al., 2012; Gal et
al., 2009; Unger, 2009; White, Hu, Langenheim, Ding, &
Burry, 2016), but these calculations usually do not in-
corporate vegetation. Tree canopy cover significantly re-
duces SVF at the pedestrian level and is an important
shade source that should be incorporated in view factor
analyses and outdoor thermal comfort assessments. The
SOLWEIG model has been successfully applied to calcu-
late SVF and MRT for urban areas using digital surface
models (DSMs) as representation of the urban morphol-
ogy (Chen, Yu, Yang, & Mayer, 2016; Lindberg & Grim-
mond, 2011; Lindberg, Holmer, & Thornsson, 2008). Al-
though trees have recently been added into SOLWEIG,
the use of DSMs does not allow to model complex urban
forms, such as building overhangs and shade structures.

We developed a methodology to calculate SVFs for
large urban areas at high spatial resolution using syn-
thetically generated fisheye images from Google Earth.
Our approach calculates SVFs for large urban areas incor-
porating the full 3D environment, including vegetation,
and is independent of available 3D building databases or
DSMs. As an example, we produced 5 m resolution SVF
maps for two neighborhoods in the Phoenix metropoli-
tan area overlaid over Google Earth terrain. To show the
utility of our approach for thermal comfort and walkabil-
ity assessments, we generated thermal comfort maps of
Arizona State University’s Tempe campus for a hot sum-
mer day in August 2016 using Google Earth hemispheri-
cal images and meteorological data from an on-site field
campaign. We then utilized a routing algorithm for pedes-
trian navigation that is optimized for distance and individ-
ual outdoor thermal comfort preferences.

2. Methods

To assess intra-urban SVF variations in select neighbor-
hoods in the Phoenix metropolitan area, we retrieved
data from Google Earth on a 5 m resolution grid to gen-
erate synthetic 180° hemispherical views of the sky from
3D buildings, trees, and terrain. We removed the sky por-
tion of the fisheye photos and calculated the SVF for
each location on the grid through equiangular projection.
Subsequently, we calculated MRT and a thermal comfort
index using the synthetic fisheyes as input for an auto-
mated radiation model to inform our case study.

2.1. Retrieving Data from Google Earth

Google Earth version 7 allows users to render a 3D mesh
of the ground that includes buildings, trees, shrubs, and
other obstacles. The 3D mesh is generated from oblique
imagery collected during Google overflight campaigns at
a 45° angle in each cardinal direction and down. The
aerial imagery is automatically converted into a 3D city
model using stereo-photogrammetry and serves as tex-
ture for the 3D mesh so that the scene can be rendered.
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As the current Google Earth Application Programming In-
terface (API) does not provide a function to export ren-
dered images, we used a NodelS server to remotely con-
trol a browser that runs the Google Earth plugin and
takes screenshots of the browser window through the
operating system API. First, our algorithm requests map
tiles from the Google Maps service for an area of interest
defined by an array of map tile coordinates and a sam-
pling resolution, in our case 5 m, to determine sampling
locations. Buildings and water bodies are excluded from
the sampling. The algorithm generates a Keyhole Markup
Language (KML) file with the coordinates of the locations
to steer the virtual camera in Google Earth. Then, the
camera takes a tour along the predefined route, and the
operating system API takes a screenshot after the Google
Earth plugin finishes loading the 3D mesh at each cam-
era location. The camera view angle is set to 90° and the
height is set to 1.1 m above ground level. 1.1 m is the
recommended height for human thermal comfort appli-
cations, as it represents the center of gravity of the hu-
man body for standing subjects (ISO 7726, 1998). The al-
gorithm takes five screenshots at each location—one in
each cardinal direction and one upwards (Figure 1a).

2.2. Fisheye Projection

After data retrieval, we generate synthetic fisheye im-
ages using an angular fisheye projection of the surround-
ings on a 2D plane (Figure 1b). For the projection, we
treat the images as a cube map and perform ray casting
in WebGL. Specifically, we represent the fisheye image
as a unit square with center ¢ = (0, 0) and calculate for
each point p = (u, v) with length r = ||p|| < 0.5 the cor-
responding position on the unit hemisphere. Points with
r > 0.5 are not part of the fisheye and are therefore col-
ored white. For all other points, the position on the hemi-

sphere is given by
sin(0)u,
v =|sin(O)v,
cos(0)
with latitude 6 = r t and normalized direction vector

P ifr>0
(up,vy) = r
(0,0) otherwise

Subsequently, the vector v is used to sample the cube
map, yielding the final fisheye image. The hemispherical
view is then converted to black and white (white = sky;
black = obstacles) using a deterministic sky color gradi-
ent (Figure 1c).

2.3. Sky View Factor Calculation

Several methods are available to calculate the SVF based
on fisheye images: The SVF can be calculated using ana-
lytical methods that derive the horizon limitation from
geometric properties of the urban canyon (Johnson &

Watson, 1984); vector-based methods that calculate the
SVF from projected building envelopes on the sky using
a 3D building database (Chen et al., 2012; Gal et al. 2009;
Gal & Unger, 2014; Unger, 2009); raster-based methods
that use digital elevation models (DEMs) or DSMs to esti-
mate SVFs based on pixel heights or shadow casting (Gal
etal., 2009; Lindberg & Grimmond, 2011; Lindberg et al.,
2008; Ratti, Baker, & Steemers, 2005; Zaksek, Ostir, &
Kokalj, 2011), and photographic methods that use fish-
eye imagery of the upper hemisphere (Bradley, Thornes,
& Chapman, 2001; Chapman & Thornes, 2004; Grim-
mond, Potter, Zutter, & Souch, 2001; Holmer, Postgard,
& Eriksson, 2001). The hemispheric horizon limitation is
usually projected on a 2D plane to calculate the amount
of visible sky in the scene. The most widely used pro-
jection technique is the equiangular projection by Steyn
(1980), where the projected image is divided into concen-
tric annuli of equal width and then evaluated. We use
a modified version of the manual Steyn-method for dig-
itized fisheye photographs that was proposed by Chap-
man, Thornes and Bradley (2001). We partition the syn-
thetic fisheye picture into n annular rings (default n = 36)
and calculate the SVF by summing up the contribution of

each ring:
T o m(2i -1 ;
SVF = — Y sin =) (P
2n = 2n t;

where p;/t; is the ratio between the number of sky pixels
to the total number of pixels in ring i (Figure 1d).

2.4. Thermal Comfort Modeling

Physiologically Equivalent Temperature (PET) is a widely-
used thermal comfort index that is based on MRT, re-
ported in °C, and expresses how people experience
weather conditions, incorporating the radiative environ-
ment and personal characteristics, such as age, clothing,
and metabolic rate (Hoppe, 1999; Mayer & Hoppe, 1987).
The 1D RayMan model (Matzarakis et al., 2007, 2010) has
been extensively employed to estimate MRT, PET, and
other thermal comfort indices from fisheye photographs,
meteorological, and personal factors (Coutts, White, Tap-
per, Beringer, & Livesley, 2016; Herrmann & Matzarakis,
2012; Johansson & Emmanuel, 2006; Kriiger, Minella, &
Rasia, 2011; Lin, 2009; Lin, Matzarakis, & Hwang, 2010;
Oliveira, Andrade, & Vaz, 2011; Thorsson, Lindqvist, &
Lindgvist, 2004), following equations outlined in the Ger-
man VDI engineering standards (Verein Deutscher Inge-
nieure, 1994). We automated the Windows GUI using a
script that simulates keystrokes to remotely execute the
RayMan tool and batch process thousands of georefer-
enced synthetic fisheyes for a given day and time. The
results are collected in a CSV file and can subsequently be
imported in ArcGIS using the fisheyes’ latitude-longitude
coordinates to generate high resolution MRT and PET
maps for further analysis.
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Figure 1. Sky View Factor calculation pipeline. Starting with five images of 90° field of view (a), we apply an angular hemi-
spheric fisheye projection (b), detect sky regions (c), and calculate the Sky View Factor using 36 annular rings (d).

3. Sky View Factor Results

We evaluated the accuracy of our SVF approach in two
steps. First, we compared the synthetic hemispherical im-
ages created from Google Earth to fisheye photos gener-
ated from Google Street View panoramic images using
the SVF as accuracy metric. Second, we compared our
SVF results to outputs from other algorithms using the
same set of fisheye photos. After validation, we gener-
ated 5 m resolution SVF maps for two contrasting neigh-
borhoods in Phoenix.

3.1. Evaluation of Sky View Factors

To assess the accuracy of the Google Earth fisheye im-
ages compared to real world photos, we generated
18,367 fisheye images from Google Street View panora-
mas across the Phoenix metropolitan area (Figure 2) us-
ing the Google Street View API. The fisheye generation
process is similar to Google Earth, but requires a more
sophisticated sky detection algorithm due to varying sky
and cloud conditions. We used a modified Sobel filter al-
gorithm for edge detection and a procedure developed
by Laungrungthip, McKinnon, Churcher and Unsworth
(2008). We then generated Google Earth fisheye pho-
tos at the Google Street View locations, using a camera
height of 2.5 m to approximate the height of a Street
View car. A comparison of SVFs calculated from Google

SVF =0.82 SVF =0.82

(1a) (1b)
Figure 2. Comparison of fisheyes and Sky View Factors generated from Google Street View images (1a, 2a) and Google
Earth 3D meshes (1b, 2b).

Earth and Google Street View yielded an average differ-
ence in SVF of 0.022 with a standard deviation of 0.084.
The largest differences in SVF were caused by two rea-
sons. First, the Google Street View panoramas were ac-
quired more recently than the Google Earth 3D mesh for
Phoenix, which was generated several years ago. Thus,
some buildings exist in Street View, but not in Google
Earth, and vice versa. Second, Google Street View offers
panoramas of building interiors that cannot be rendered
in Google Earth. Filtering out 2,579 indoor panoramas
and extreme cases of time discrepancies yielded a 0.01
average difference in SVF with a 0.028 standard devia-
tion. This error is minimal and we conclude that the ren-
dered output of Google Earth yields adequate results.
We evaluated the accuracy of the SVF calculations
by computing the SVFs of 527 randomly selected Google
Earth fisheye images in the Phoenix metropolitan area
using our implementation of Chapman et al. (2001),
the RayMan Pro model v2.1 by Matzarakis et al. (2007,
2010), the SkyViewFactor-Calculator v1.1 by Holmer et
al. (2001), and the unweighted, naive approach of count-
ing pixels. Since the SkyViewFactor-Calculator uses the
well-established Steyn-method (Steyn, 1980), we chose
the Holmer et al. SVF implementation as reference. As
shown in Figure 3, our implementation of Chapman et al.
(2001) produces SVFs that are not significantly different
from the well-established Steyn-method. We confirm the
findings of Himmerle, Gal, Unger and Matzarakis (2011),

SVF=0.44 SVF =0.38

(2b)
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Figure 3. Our Sky View Factor implementation compared to other algorithms.

showing that the RayMan model significantly underesti-
mates SVFs, especially in the midrange, when Lambert’s
law is not considered for the pixel weighting. Lastly, sim-
ply calculating the ratio between sky and non-sky pixels
yields inaccurate results, since this approach does not ac-
count for angular distortion.

3.2. High-Resolution Sky View Factor Maps in 3D

To illustrate the spatial variability of horizon limitations
in urban areas, we created SVF maps at 5 m resolu-
tion and 1.1 m height from synthetic Google Earth fish-
eye photos for two contrasting neighborhoods in the
Phoenix metropolitan area—a residential area in the
City of Phoenix (Ahwatukee, Lakewood community) and
Phoenix Downtown (Figure 4). The residential subdi-
vision is a neighborhood with detached single family
homes, approximately 2.4 km by 1.8 km, and can be
classified as an Open Lowrise Local Climate Zone (Stew-
art & Oke, 2012). The Downtown area is 2 km by 3 km
and classified Open to Compact Highrise. The SVF maps
were created in ArcGIS and exported as KML for display
in Google Earth, clamped to the ground, with 3D terrain
activated. While the core Downtown area exhibits low
SVFs (< 0.40) near office buildings, SVFs in the central
business district are generally high due to wide streets
(number of fisheyes: 168,266; mean SVF: 0.76; standard
deviation: 0.17). The Ahwatukee suburb is characterized
by even higher SVFs (number of fisheyes: 97,393; mean
SVF: 0.86; standard deviation: 0.14), except to the north-
west, where a 3-story apartment complex lowers SVFs to
0.50. The close-up views of the areas clearly highlight the
importance of trees for SVF calculations.

4. Case Study: Thermal Comfort Maps for Pedestrian
Routing

We demonstrate the utility of our synthetic fisheye ap-
proach through a case study that highlights how urban
form and vegetation impacts thermal comfort and walk-
ability. As a study area, we chose Arizona State Univer-
sity’s main campus, located in the City of Tempe, Ari-
zona. Tempe is an ideal urban area for heat stress stud-
ies, because it is located in the Sonoran Desert and has
a semi-arid climate with hot and dry summers. Aver-
age maximum air temperature peaks at 40.4°C between
June and August, and monthly precipitation is less than
1 mm in June (Western Regional Climate Center, 2016).
Most of Arizona State University’s Tempe campus is des-
ignated as a walk-only zone during weekdays from 8:00h
to 16:00h; no one may ride, drive, or park wheeled vehi-
cles. With over 50,000 students and faculty on campus,
increasing pedestrian thermal comfort through heat mit-
igation measures is especially important during the sum-
mer months. For this study, we selected a 3 X 3 Google
Maps tile area (ca. 750 m X 750 m) that encompasses the
north-west corner of the main campus and corresponds
to an open low- to midrise Local Climate Zone with a
mean SVF of 0.52 + 0.18 (Figure 5).

We ran the automated version of RayMan for 19,600
synthetic fisheye photos in the study area at 1.1 m height
on a 5 m grid for August 7, 2016, a week before classes
started. Weather conditions were hot and clear, with a
daily maximum temperature of 43°C, minimum temper-
ature of 30°C, average dew point of 14°C, and light wind
(< 1.5 ms™1). As meteorological model input, we used
observations from an hourly microclimate transect that
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Figure 5. Aerial photo (a) and high-resolution Sky View Factor map at 1.1 m height (b) for the north-west corner of Arizona

State University’s Tempe campus.

was conducted on campus between 8:00h and 19:00h on
August 7, 2016. Air temperature, relative humidity, and
wind speed were logged at 1.5 m and 2 s intervals dur-
ing the transect, linearly time-detrended to the full hour,
and spatially averaged to yield representative mean val-
ues for the study area. For the thermal comfort routing
application, we focused on 9:00h in the morning and
17:00h in the late afternoon, shortly after peak air tem-

perature, and assumed a walking 35 years old male in a
t-shirt and shorts (Table 1).

4.1. Thermal Comfort Model Performance
The fine-scale modeling results for Arizona State Univer-

sity’s campus highlight direct radiation as an important
driver of MRT. Shade, i.e. the absence of direct incom-
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Table 1. Meteorological data for August 7, 2016, and personal characteristics used as input for thermal comfort modeling.

Air Relative Wind
Temperature Humidity Speed Weight Height Clothing Metabolic
[°c [%] [ms™}]  Age  Gender [kg] [m] [clo] Rate [Wm™2]
09:00h 33.6 35.8 0.9
17:00h 41.6 23.1 06 35 Male 75 1.75 0.5 110

ing shortwave radiation, causes discontinuities in MRT, il-
lustrated by two separate color-schemes for shaded and
unshaded locations on the map (Figure 6). Shaded loca-
tions range from 49.0°C to 50.0°C MRT (49.4°C to 50.1°C
MRT) in the morning (afternoon), while sun-exposed ar-
eas are upwards of 58.6°C MRT (57.2°C MRT). The map
further suggests that MRT is slightly increased near verti-
cal urban features. Although an increase in emitted long-
wave radiation is expected from sun-facing walls that are
or have been exposed to direct radiation, and therefore
become a source of radiant heating, the same does not
necessarily apply to permanently shaded surfaces and
trees. This is a known limitation of the RayMan model;
it assumes the same thermal properties for all solid sur-
faces in the fisheye image and the lower hemisphere,
which can lead to an overestimation of longwave radia-
tion from surfaces.

To test model performance, we compared the Ray-
Man simulated MRT results to six-directional radiant flux
density observations from an on-campus field measure-
ment campaign on August 7, 2016 (Figure 6). 3D radiant
flux densities were sampled at 20 locations across cam-

August 7, 2016, 09:00 h

shaded

[58.6 58.8 59.0 59.2 59.4 |59.6 150.8 G0N

sun-exposed

pus every hour from 8:00h to 19:00h using three Huk-
seflux 4 component net radiometers mounted on a mo-
bile instrument platform at 1.1 m height above ground.
The sampling sites were traversed within 45 minutes, in-
cluding a one minute stop at each location to account for
sensor lag. MRT was calculated from the observations fol-
lowing ISO 7726 (1998). The sites were selected to span
a wide variety of sun-exposure and surface cover com-
binations (Table 2). Exposure settings include open sites,
shade from trees, east-west canyons, and a building over-
hang; surface cover varies between concrete, grass, soil,
and gravel.

A comparison of modeled and observed MRT shows
considerable differences for most locations (Table 2). Al-
though RayMan explains 84.4% of the variance in MRT,
the model consistently overestimates shaded and under-
estimates sun-exposed sites (RMSE=7.33; MBE=3.69;
MAE=6.83; d=0.72). This indicates that the model accu-
rately captures the differences in MRT between shaded
and sun-exposed locations due to incoming shortwave
radiation, but has difficulties to resolve the heterogene-
ity of urban form. Our results are in agreement with

= - . l' u
BEBE 96 497 498 499 500 50.1]

shaded

572 573 574

sun-exposed

Figure 6. Simulated mean radiant temperature (MRT) map of the study site for 09:00h (a) and 17:00h (b) on August 7, 2016,

with on-site mean radiant temperature observations.
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Thorsson et al. (2007) who found that RayMan under-
estimates sun-exposed sites under clear conditions in
Goteborg, Sweden, and with Lee and Mayer (2016) who
found that RayMan overestimates low and underesti-
mates high MRT observations in Freiburg, Germany. Yet,
RayMan performed better in our setting than during
a field experiment in Glasgow by Kriiger, Minella and
Matzarakis (2014) who reported RMSE values upwards
of 10°C in a comparison of various methods to estimate
MRT. Despite the divergence between observed and
modeled MRT values, we conclude that RayMan yields
reasonable estimates to demonstrate the utility of our
thermal comfort routing application. Improving MRT sim-
ulations is beyond the scope of this paper, but imple-
menting a refined radiation scheme for our synthetic fish-
eye approach is part of ongoing work.

4.2. Pedestrian Routing

Based on the RayMan model output for PET, we sug-
gest walking routes across campus that are tailored to
thermal comfort preferences. We employed the Dijk-
stra (1959) algorithm to calculate the shortest path be-
tween two locations in the study area and incorporated
a weighting that accounts for PET preferences of an indi-
vidual. The “comfort over distance” parameter a controls
the importance of thermal comfort for navigation, i.e.
o = Ovyields the shortest path and o — oo yields the most
comfortable path, minimizing average PET of a route. For
our case study, we selected a route starting at the Ira

A. Fulton Schools of Engineering Brickyard north-west of
the Tempe campus and ending at the Memorial Union in
the campus center. The Brickyard building complex is lo-
cated on Mill Avenue, a pedestrian-friendly street in the
heart of Tempe with many restaurants, cafes, bars, and
shops. The Memorial Union offers student support ser-
vices and is a major activity hub at the campus core. We
calculated the shortest path (o« = 0), a more comfortable
path (o = 2), and the most comfortable path (« — o)
from the Brickyard to the Memorial Union for August 7,
2016, 9:00h and 17:00h (Figure 7). With increasing will-
ingness to walk further, optimal comfort routes divert
from the shortest path to navigate pedestrians through
shade from buildings and trees instead of exposing them
to the sun. Routes also vary by time of day, as the sun po-
sition changes shade patterns from buildings and trees.
At 9:00h, shade is generated to the west of urban fea-
tures and the most comfortable route leads through a
tree-lined north-south canyon between midrise build-
ings. At a walking speed of 1.4 ms™%, the route is 65 m
and 48 s longer than the shortest route (995 m, 11 min
and 48 s), lowers sun exposure by 7.5%, and increases av-
erage thermal comfort from 43.4 to 42.9°C PET (Table 3).
At 17:00h, when shade is generated to the east at a low
sun angle, the most comfortable path leads along the
east side of a group of high-rise buildings through an al-
most completely shaded north-south canyon. The route
is 97 m longer than the shortest path (997 m, 11 min and
54 s), adding 1 min and 6 s to the trip but reducing sun
exposure by 10%.

Table 2. Site description and comparison of simulated vs. observed mean radiant temperature for 20 locations in the study

area for August 7, 2016 at 9:00h and 17:00h.

09:00 h 17:00 h
Stop Surface MRT.,s  MRT 4. MRT 41 — MRT,,s  MRT 4. MRT 41 —
ID Exposure Location Cover [°C] [°C] MRT s [°C] [°C] [°C] MRT,,s [°C]
1 shade under tree concrete 443 49.6 53 43.8 499 6.1
2 sun E-W walkway concrete 68.2 59.6 -8.6 68.2 57.5 -10.7
3 shade under tree soil 46.4 49.8 3.4 38.7 49.4 10.7
4 shade under tree grass 38.6 49.8 11.3 41.2 49.6 8.4
5 shade under tree grass 45.1 50.0 4.9 42.1 49.9 7.8
6 shade under tree gravel 40.5 49.4 8.9 46.3 49.7 34
7 sun intersection concrete 67.4 58.9 -8.5 66.6 57.4 -9.2
8 shade under tree concrete 40.9 49.6 8.7 45.5 50.0 4.5
9 shade under palm trees  concrete 44.2 50.0 5.8 48.3 50.0 1.7
10 shade under tree soil 39.3 49.8 10.5 43.9 49.9 6.0
11 shade under overhang concrete 33.6 49.4 15.8 36.0 49.9 13.9
12 shade under tree concrete 57.0 49.2 -7.8 46.1 49.7 3.6
13 shade under tree concrete 43.0 49.4 6.4 44.6 49.8 5.2
14 shade under tree grass 40.0 49.3 9.3 43.2 49.8 6.6
15 shade under tree concrete 41.5 49.4 7.9 41.7 49.9 8.2
16 shade under tree concrete 41.6 49.5 7.9 43.9 49.8 5.9
17 shade under tree concrete 43.0 49.5 6.6 47.3 49.8 2.5
18 shade under tree concrete 48.3 49.3 1.0 47.2 49.8 2.6
19 sun E-W canyon concrete 64.9 59.5 -5.4 67.2 57.7 -9.5
20 shade under tree concrete 41.6 49.9 8.3 39.3 49.9 10.6
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Figure 7. Thermal comfort map (Physiologically Equivalent Temperature, PET, in °C) for Arizona State University’s Tempe
campus for August 7, 2016, 09:00h (a) and 17:00h (b); Shortest path (dotted line) from the Ira A. Fulton Schools of Engineer-
ing (Brickyard) to the Memorial Union, slightly longer, but more comfortable route (dashed line), and most comfortable
path (solid line).

Table 3. Route statistics on length, walking duration (at 1.4 ms™?), average thermal comfort (PET), and sun exposure for
three thermal comfort preferences (o = 0,2, &« — o0) at two different times of day (9:00h and 17:00h) on August 7, 2016.

09:00h 17:00h
a=0 oa=2 o — a=0 oa=2 o — 00
Length [m] 995 1020 1057 997 1016 1094
Duration [min] 11.8 121 12.6 11.9 12.1 13.0
Average PET [°C] 43.4 43.2 42.9 48.7 48.5 48.3
Sun Exposure [%] 50.5 45.0 43.0 37.1 333 27.4
Sun Exposure [min] 6.0 5.5 5.4 4.4 4.0 3.6

Considering the hot dry thermal conditions on Au-
gust 7, detours from the shortest path are short and rea-
sonable, and at the same time significantly reduce sun
exposure, especially in the late afternoon when sun an-
gles are low. Thermal comfort differences in the short-
est and most comfortable path are expected to be more
pronounced for longer distances and in more heteroge-
neous urban forms. Results will also differ in other cli-
matic conditions where humidity or wind speed might
play a more significant role in determining thermal com-
fort and during the winter when deciduous trees have
lost their leaves.

5. Discussion and Conclusions
We developed a methodology to generate synthetic fish-

eye images based on Google Earth 3D data for urban
areas at fine spatial resolution. The hemispherical im-

ages can be used to derive urban form and climate met-
rics such as SVF, duration of sun exposure, MRT, and
the thermal comfort index PET. Our approach is novel
in that it combines several advantages of existing ap-
proaches. First, urban form and climate metrics can be
calculated automatically for large urban areas indepen-
dent of available 3D building databases, DSMs, or DEMs.
Second, trees are included in the 3D urban geometry;
trees are important shade providers at the pedestrian
level that must be considered in fine-scale outdoor ther-
mal comfort applications. Our synthetic fisheye images
compared well to real world hemispherical photos re-
trieved from Google Street View, but are currently more
difficult to generate, because the most recent Google
Earth APl does not support direct access.

The presented SVF approach integrates well with
existing thermal comfort models that use fisheye pho-
tographs to model radiation fluxes. However, refinement
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of the physical properties and sun-exposure of the solid
surfaces in those fisheye-based models is needed to re-
solve the heterogeneity in urban areas and estimate ther-
mal comfort more accurately.

In a heat mapping case study, we demonstrated the
utility of our synthesized fisheye images for pedestrian
thermal comfort routing on Arizona State University’s
Tempe campus. We introduced the “comfort over dis-
tance” parameter a that minimizes average PET expo-
sure for a route based on a pedestrian’s willingness to
walk further. Integrating personalized thermal comfort
preferences as a weighting factor, we estimated a pedes-
trian’s exposure time to direct sun given a route, walk-
ing speed, and overall thermal comfort. The current rout-
ing algorithm minimizes average PET with increasing a,
but the duration, frequency, and magnitude of personal
exposure to heat affects thermal comfort as well (Kuras
et al., in press). The time spent walking above a cer-
tain PET threshold presents an alternative metric simi-
lar to the Extreme Degree-Minute approach employed
by Karner, Hondula and Vanos (2015) that could be im-
plemented as weighting factor. Our algorithm can fur-
ther be extended to provide more individualized ther-
mal comfort routes incorporating multiple weighting fac-
tors, e.g., traffic-related air pollution and accessibility to
cooling facilities such as water fountains, shops, and cool-
ing centers.

Our individualized thermal comfort maps demon-
strate how urban form, represented here by the SVF, im-
pacts walkability and pedestrian outdoor thermal com-
fort. As navigational aid, these maps have the poten-
tial to significantly reduce thermal stress on pedestrians.
They can help the public to better prepare for outdoor
activities by visualizing how thermal conditions “feel”
and how they vary within the urban area. Thermal com-
fort maps can also provide useful information for urban
planners. They can be employed to assess neighborhood
walkability, determine hotspots, and support heat haz-
ard mitigation efforts, e.g., inform targeted tree planting
in cities to maximize thermal comfort outcomes.

Thermal comfort outcomes are significantly influ-
enced by how we design cities, i.e. the layout and types
of buildings, streets, and vegetation. Thermal comfort
maps from synthetic fisheye photos provide important
insights that, integrated into urban planning processes,
can inform future city design to create more climate-
sensitive outdoor spaces.
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