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Abstract
Plazas are an essential pillar of public life in our cities. Historically, they have been seen as public fora,
hosting public events that fostered trade, interaction, and debate. However, with the rise of modern
urbanism, city planners considered them as part of a larger strategic development scheme overlooking their
social importance. As a result, plazas have lost their function and value. In recent years, awareness has risen
of the need to re‐activate these public spaces to strive for social inclusion and urban resilience. Geometric
and urban features of plazas and their surroundings often suggest what kinds of usage the public can make
of them. In this project, we explore the application of machine learning to predict the suitability of events in
public spaces, aiming to enhance urban plaza design. Learning from traditional urbanism indicators, we
consider factors associated with the features of the public space, such as the number of people and the high
degree of comfort, which are evolved from three subcategories: external factors, geometric shape, and
design factors. We acknowledge that the predictive capability of our model is constrained by a relatively
small dataset, comprising 15 real plazas in Madrid augmented digitally to 2025 fictional scenarios through
self‐organising maps. The article details the methods to quantify and enumerate quantitative urban features.
With a categorical target variable, a classification model is trained to predict the type of event in the urban
space. The model is then evaluated locally in Grasshopper by visualising a parametric verified geometry and
deploying the model on other existing plazas worldwide regarding geographical proximity to Madrid, where
to share or not the same cultural and environmental conditions. Despite these limitations, our findings offer
valuable insights into the potential of machine learning in urban planning, suggesting pathways for future
research to expand upon this foundational study.
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1. Introduction

The need for event prediction models in an urban environment is essential for all kinds of applications, from
natural disaster preparation to urban management, planning, and development of smart cities (Mukhina
et al., 2019). This rapid change in the relationship between events and public space highlights the features of
the eventful city (Richards & Colombo, 2017) and how their form defines them, duration, content, and
effects, determined to a certain extent by urban space and process (Richards & Palmer, 2010). The emphasis
on people’s behaviour in the public space and how it is affected by the built environment (Lynch, 1964) and
its underlying elements that navigate the mode of human group life (Wirth, 1938) underscores the
importance of designing urban spaces that foster social interaction and community engagement.

Traditional methods focus on trending major sporting and cultural events on a large scale (Smith, 2012, 2017),
ignoring the continuity across scales to predict, prepare, and manage smaller‐scale events and their outcomes.
In addition, small‐scale events remained unprecedented (Page & Connell, 2023) despite their essential effect
on specific public spaces’ publicness (Brighenti, 2010). In contrast to the traditional approach of other practices
within the field of event prediction, our research tests the use of machine learning (ML) to overcome those
limitations of scale, where those boundaries are diminished on the shared ground of the dataset.

Our main research question is: To what extent can ML models predict public events in urban plazas based on
quantifiable urban features? This study aims to achieve two main objectives: (1) to explore the affordance of
urban plazas and their contemporary design, use, and role; and (2) to test the application of ML for predicting
public events in these spaces.

This study fills a critical gap in the literature by applying ML to predict the suitability of urban plazas for
various public events, offering a novel methodological approach that integrates spatial and temporal data.
Building onDonald Appleyard’s theoretical framework (Appleyard, 1981) on street and public space activation,
this research highlights the importance of designing public spaces that encourage various forms of social
interaction and activities.

2. State of the Art

Modern studies have shifted from event detection, which focuses on identifying events after they occur, to
event prediction, which aims to anticipate events before they happen. There are many existing works about
event forecasting, including disease outbreaks (Achrekar et al., 2011; Zhao et al., 2015), crimes (Rumi et al.,
2018; Wang et al., 2012), and other types of events (Dencik et al., 2018; Huang et al., 2017; Jin et al., 2014).
For example, Smith (2012) and Wang et al. (2012) demonstrate how predictive models can forecast events
such as protests, and cultural gatherings based on social media data and urban features. Existing methods for
event prediction often rely on social media data like Twitter or Instagram (Kursuncu et al., 2018) but typically
overlook spatial design features integral to public spaces (Ramakrishnan et al., 2014; Zhao et al., 2016).
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Public spaces in historical districts, particularly in Mediterranean countries, play a vital role in urban life due to
their historical and cultural significance. These spaces are often central to social interactions, cultural events,
and community activities, making them ideal case studies for examining the impact of urban design on public
space utilisation (Gehl, 2011; Lynch, 1964).

3. Methods

Our methodology hinges on a comprehensive approach to model development, encompassing the encoding
of quantifiable plaza metrics in different cities, data augmentation, ML model training, and rigorous
evaluation. The aim is to design a methodology that could be tailored to different scenarios and urban
contexts. By choosing a single city to compose the dataset, we restrict the number of variables and features
that appear throughout the process. Since our goal is the evaluation of urban plazas and outdoor activities,
southern European cities are undoubtedly relevant. Due to its historical configuration and tourist interest,
Madrid is taken as a case study, as its urban fabric comprises enough samples to establish a balanced initial
dataset regarding size, shape, and urban situations (Figure 1).

Given the potential biases in our data, we limit our study to urban plazas in similar geographical and cultural
contexts to Madrid. The selection of the indicators was guided by their relevance to public space utilisation.
We categorised these indicators into external factors, geometric shape, and design features, and evaluated
their influence on the suitability of plazas for different events. The indicators used in our classification include
1) External factors such as pedestrian traffic and proximity to amenities, 2) Geometric shape including size
and layout, and 3) Design features like seating availability and shading. These indicators were chosen for their
demonstrated impact on public space usage as identified in urban studies literature. The rationale for each
indicator is based on its ability to influence the suitability of a plaza for various types of events.

Figure 1. Initial dataset. On the left, plaza metrics are classified as External factors, Shape factors, or Design
factors. Abbreviations: GH (Grasshopper plugin in Rhino software), OSM (Open Street Maps). On the right,
satellite imagery of the 15 initial plazas grouped by size (first row large, second row medium, third row small).
Source: Authors’ creation from Google Earth.
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3.1. Model Establishment and Indicators

To assess which aspects could be more relevant for the event suitability prediction we used Gehl’s
classification of outdoor activities (Gehl, 2011), which differentiates between necessary, optional, and social
activities. Necessary activities occur in almost any condition and the physical environment only slightly
influences their occurrence. Optional activities are those that people choose to do if the conditions are
favourable. Finally, social activities depend on the presence of people and how they interact. With this
definition in mind, optional activities are the ones greatly influenced by the physical nature of public space,
so they will be the main focus of this research.

To underpin this classification, Gehl refers to a series of indicators to assess the quality and effectiveness of
urban spaces:

• Degree of Comfort: Measures how comfortable people feel in a given urban space;
• Level of Activity: This indicator looks at the types of activities occurring in an urban space;
• Social Interaction: Measures frequency and quality of social interactions taking place in the space;
• Safety and Security: Evaluates how safe and secure people feel;
• Accessibility and Connectivity: Assesses how easily people can reach and move through the space.

For the specific case of Madrid, the Degree of Comfort and Level of Activity were chosen as the key
indicators. Their evaluation does not include a fixed set of features; they are context‐dependent and local
urban knowledge is required to find the most appropriate ones. For the case of Madrid, we selected a series
of features commonly used in urban studies and also specific to Madrid (Higueras García et al., 2017). They
are categorised into external, geometric shape, and design factors (Figure 2).

• External factors:
– Nearby plazas (nearby_plazas): Number of plazas located in the surroundings.
– Points of interest (poi): Surrounding locations labelled of interest by Open Street Map.
– Distance to the city centre (dist_citycenter).
– Public transport lines (transport_lines): Number of transportation modes that reach the site.
– Public transport accesses (tr_stop/entrances): Public transport stops in the surroundings.
– Distance to public transport stops (dist_connections): Average distance to public transport stops.

• Geometric shape factors:
– Buildings’ height/plaza’s width (h_div_side): Estimates how open the space feels in elevation.
– Percentage of perimeter length surrounded by buildings (per_building): Gauges how open the space

feels in the plan.
– Number of entrances to the public space (no_entrances).
– Number of centres (centralities): Related to the plaza’s plan geometry, broken‐down polycentric

plan geometries are not ideal for some activities.
• Design factors:

– Traffic surface (traffic_srf): Percentage of surface area dedicated to vehicular traffic.
– Pedestrian surface (pedestrian_srf): Percentage of surface area dedicated to pedestrian traffic.
– Garden surface (garden_srf): Percentage of surface area for green areas.
– Playground surface (playgr_srf): Percentage of surface area dedicated to children‐safe areas.
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– Commercial surface (commercial_srf): Percentage of surface area dedicated to commercial activities.
– Sitting furniture (sitting_furn): Percentage of surface area with sitting furniture.
– Commercial facades (fac_commercial): Percentage of surrounding facades dedicated to retail space.
– Number of identity elements (identity_elem): Number of built identity elements within the plaza.

Figure 2. Multi‐bar diagram showing the evaluation process (green high, yellow normal, red low, grey n/a)
of each plaza (coloured lines), returning two values per input (columns); Activity Level (left bar/pink triangle)
and Degree of Comfort (right bar/blue triangle). The increase/decrease of levels is driven by specific urban
features such as pedestrian traffic, seating availability, and shading. The bars represent these levels concerning
the type of events likely to occur.
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The variables configuring our External factors were extracted from open data (OpenStreetMap) using Python’s
APIs. Nevertheless, due to the lack of urban data, most of the features encoded as Shape and Design factors
have been geometrically rebuilt and subsequently compiled using Rhino/Grasshopper software (Version 7;
Robert McNeel & Associates, 2022).

3.2. Model Fitting and Evaluation

The model was trained using a classification approach, where the selected target classes represent five
different suitable events classified as optional activities following Gehl’s classification. The proposed event
types were chosen to reflect the programmatic diversity plazas can accommodate, focusing on those that
require minimal fixed infrastructure and can attract varied demographic groups. The selected classes were:
1_Concert, 2_Market, 3_Urban performance, 4_Protest, and 5_Nothing.These categories were chosen based
on common types of events identified in previous studies on public space utilisation (Smith, 2017; Wang
et al., 2012). This selection allows us to examine the adaptability of public spaces to different events while
excluding others like sporting activities, which typically require specialised facilities. These scenarios reflect
a diverse range of events that plazas can accommodate, focusing on those that require minimal fixed
infrastructure and can attract varied demographic groups.

Performance was assessed via accuracy, precision, and recall metrics, critical for evaluating the model’s
effectiveness in predicting event types based on plaza characteristics. Variability in event type predictions
was analysed against key metrics of plaza design—Level of Activity and Degree of Comfort—to understand
how different factors influence event suitability, as detailed in Figure 3.
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Figure 3. The figure shows the most likely event per plaza based on our model’s predictions, though multiple
events can occur in reality. It shows the result (green high, yellow normal, red low, grey n/a) of the evaluation
process (Figure 2) of each plaza (row) per input (columns) according to its Activity Level (left matrix) andDegree
of Comfort (right matrix), from which the output is assigned (right column).
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3.3. Data Augmentation and Synthesis

To add variability to the initial sample in terms of shape and urban situations, the selection of the initial dataset
includes 15 plazas differentiated by size: small ( < 2000 m2), medium (2000–7000 m2), and large ( > 7000 m2).
Each of them was analysed and evaluated according to the parameters established in the previous sections.
Finally, the most suitable output out of the five proposed classes is assigned according to the result obtained
regarding its two main indicators, Level of Activity and Degree of Comfort, which were identified based on
their empirical relevance in urban studies.

There are two major drawbacks to curating a valid dataset for a single city. Firstly, encoding existing plazas,
collecting, and formatting relevant metadata into a dataset is tedious. Secondly, the actual number of squares
present in a single city is too few to become a valid dataset on its own. To address the challenge of a small
initial dataset, we employed a self‐organising map (SOM) for data augmentation, expanding our dataset from
15 initial plazas (seeds) to 2025. This approach allowed us to synthetically generate a diverse array of plaza
scenarios, enhancing the model’s learning potential. Of the numerous virtual sample generation methods that
have proven effective formodel training (DeVries & Taylor, 2017), the SOMs (Kohonen, 1995) relativemapping
algorithm was used as the augmentation model in this research thanks to its Grasshopper implementation
(Food4Rhino, 2021). After testing different combinations to determinewhichmap size best allows the seeds to
occupy themap boundaries, we established a square ratio of 45x45 as it produces the most distributed results.

The categorical data had to be coded as discrete quantitative variables so as not to introduce errors into
the initial dataset. In addition, interpolating the discrete variables from the initial plazas yielded continuous
variables in the data augmentation process, which had to be refined a posteriori to adopt the discrete value of
their closest neighbour as a 2‐dimensional interpolation method.

SOMs are a relative dimensionality reduction technique where initialisation plays a defining role in the final
convergence of the map. To ensure that none of the initial seeds are underrepresented in the new synthetic
dataset, there needs to be an iterative refining process where parameters could be tweaked and seeds
removed until the SOM algorithm converges in a dataset that properly represents the problem.

3.4. Dataset Analysis

The produced synthetic dataset is subjected to statistical and graphical analysis to ensure it is coherent. This
stage was essential for uncovering useful information and coming up with our conclusions at the end. Through
this process, features were organised, transformed, cleaned up, added, or subtracted to understand the model
predictability behaviour.

We analysed the correlation between our dataset’s response and input variables using pair plots and
correlation heatmaps. The goal was to detect features that might be redundant and therefore be able to
reduce the dimensionality of our dataset through feature engineering. We also graphically analysed the
distribution of the different categories’ data points to understand possible challenges that could hinder
model training.
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3.5. ML Models

We trained different ML models on our synthetic dataset to test its quality, both shallow and deep. The three
shallow learning models tested were Scikit‐learn’s Logistic Regression, Random Forest Classifier (Scikit‐learn,
2022), and XGBoost Classifier. In addition, we chose a simple Artificial Neural Network (ANN; Tensorflow,
2022) as a deep learning model with cross entropy as a loss function. Finally, we tested two versions of our
dataset with a train/test split of 80/20% (1620 train/405 test):

Raw dataset: Original dataset with all the selected 20 features.

Reduced dataset: Following the latest principal component analysis (PCA), the features were reduced
to the 14 most relevant ones.

4. Results and Discussion

Following the previously presented method, we tested the approach with the 15 initial plazas.

4.1. Results From the Data Augmentation (SOM)

As mentioned, before reaching the final synthetic dataset we used for model training, we refined the initial
parameters fed to the SOM algorithm multiple times. In our first attempts to produce our dataset, most
seeds clustered and merged in the same synthetic data point while only two of the large ones (Plaza de
Colón and Plaza de España) were distributed around the map. These two seeds and their associated
programs were overrepresented compared to the rest that clustered. Despite fine‐tuning the initial features,
these two outlying plazas conditioned and unbalanced the dataset (Figure 4). To prevent this, they were
excluded from the dataset.

When repeating the analysis with the same parameter distribution, we observed how the seeds mixed and
occupied more significant portions of the board. However, they did not span toward two of the board edges,
resulting in most events being underrepresented in the initial dataset and having a significant part of the
synthetic data points distant from any labelled seed, meaning that most of the data generated was not within
the parameter bounds of the 13 plazas used (15 initial ones minus the 2 outliers) and did not configure a valid
dataset (Figure 4).

In the third attempt, we tried to find ways to occupy the board edges. We introduced two plazas from the
large category, the same as the ones we removed in the previous stage. These additions addedmore variability
to the initial plaza seeds and located themselves in the board edges without compromising the entire dataset.
Finally, some of the metrics initially considered were modified or refined to avoid highly correlated values in
the dataset (Figure 4).

Throughout the dataset curation process, shallow learning models were trained in an iterative process.
We used a logistic regression (Scikit‐learn, 2022) and an XGBoost Classifier (Chen & Guestrin, 2016), with
different data representations to understand how relevant the selected features were and which ones were
more meaningful for the classification.
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Figure 4.Results of the tests performed using the KohonenMaps plugin. This figure shows the positions of the
initial seeds relative to each program. On the left are different feature configurations with 15 and 13 plazas.
On the right, the SOMdisplays the final dataset that was used after the data augmentation process. The x‐axis
represents the various features of the plazas, while the y‐axis indicates the different event types predicted by
the model. From the results, we observe that there is no significant correlation between the size of the plaza
and the suitability of an event happening. Instead, the suitability for events appears to be influenced more
by the combination of external factors, geometric shapes, and design features. This analysis highlights the
complexity of predicting event suitability, suggesting that a multifaceted approach considering various urban
features is necessary for accurate predictions. Source: Authors’ creation from Grasshopper.

4.2. Results From the Dataset Analysis

The Correlation Matrix Heatmap showed the covariance between the different metrics and, in the case of
observing a high proportionality (direct or indirect), we analysed whether this covariance implied causality
or was due to the effect of a third variable, such as the type of event. For instance, we observed a high
proportionality between the number of nearby plazas and the number of POIs (nearby_pl & poi). An exclusive
heatmap for each type of event revealed that both variables present covariance for each output case, so we
simplified our model by reducing one of these parameters. In the individual analysis by event type, some
relationship was observed between other pairs of features. Still, its relevance for the model was discarded
since this covariance did not appear in the overall matrix.

In our initial PCA of the input variables (Jolliffe, 2004), we observed that while most indicators contribute
similarly to the overall prediction of event suitability when considering all event types collectively, there are
distinct patterns when examining each event type individually. In particular, certain events are more strongly
associatedwith specific parameters. For example, concerts are often related to larger plaza sizes and proximity
to transportation hubs, whilemarkets aremore influenced by pedestrian traffic and the availability of amenities
such as shops and cafes. Figure 5 illustrates these relationships by showing the loadings of each indicator on
the principal components, highlighting which parameters are most influential for different event types.
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In the relationship matrix between the features and the PCA analysis we observed that, for the first three
iterations, none of our parameters stood out as highly determinant for the prediction of our target, which
reveals that the definition of our initial metrics included enough variability to the model (Figure 5).

When graphically analysing the distribution of different features in our dataset, the output (Figure 6) reveals
two challenges for the model training that the SOM induced in the dataset:

• Firstly, most classes overlap significantly throughout the different features. There is no unique feature
that helps the classification.

• This is aggravated by the fact that within the same category there are gaps between the data points.

One of the main conclusions we drew from the synthetic data augmentation process, beyond the
importance of defining the initial features and how to measure them, was the crucial role of urban data
analysts in interpreting whether the dataset is valid and adequately represents the problem to be addressed.
The researchers in charge of this process must be knowledgeable about the research topic and understand
what they can do to curate a satisfactory dataset. This suggests that for most urban studies that could be
investigated using this methodology, the best way to proceed is to create a specific dataset for each.
Attempting to create a generalised one may not be satisfactory for all cases.

During the data augmentation process, the SOM algorithm could spawn unrealistic values that hinder learning.
These data points tend to be located in the perimeters of the SOM far away from the initial seeds. In these
areas, the vector interpolation of the algorithm could generate values outside of the boundaries set by the
initial seeds. After achieving a satisfactory SOM result, the dataset needs to be carefully reviewed and the
unrealistic data points excluded.
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Figure 5. Results of the statistical analysis. On the left is the two‐dimensional graph of the first two principal
components, mapping the relationship between the output (coloured symbols) and the inputs (text). On the
right, the relationship matrix illustrates the proportionality among each input (row) and each PCA analysis
(columns) on a scale from 1.00 (green) to –1.00 (purple). The visuals indicate that there is no significant
correlation between the size of a plaza and the suitability of an event occurring. Source: Authors’ creation
from Matplotlib and Seaborn Library.
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Figure 6. The exploratory data analysis of 15 out of the 20 features shows a great overlap between classes
throughout features and the existing gaps between data points of the same class in different features. Source:
Authors’ creation from Matplotlib and Seaborn Library.

4.3. Results From the Learning Process

As mentioned in Section 3.5, during the learning process we tested multiple shallow and deep learning ML
models and two versions of our dataset: a raw dataset with the initial 20 features considered and a reduced
one with the 14 most relevant ones following the PCA.

With the raw dataset, the three shallow learning models had a good performance, over 0.93 (Table 1).
XGBoost Classifier (score: 0.978) performed better than the linear regression (score: 0.938) and the Random
Forest Classifier (score: 0.968) (Table 1). Precision and recall values are high throughout the different classes,
especially with XGBoost, and, in general, the class 2_market stands out over the rest (Figure 7).

Table 1. The table compares train and test accuracies between the different models.

Model Train accuracy Test accuracy

Logistic regression 0.93703 0.93827
Random Forest Classifier 1.0 0.96296
XGBoost Classifier 1.0 0.97778
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The ANN performed better with shallower architectures and the use of Dropout layers to try to reduce
overfitting. The performances, in general, were below the three shallow learning models explored and, in any
case, outperformed by the two best‐performing ones (Random Forest Classifier and XG Boost). The batch
size hyperparameter was changed to verify that the learning process was not stuck in local minima. Still,
learning did not improve. As seen in Figure 7, all architectures tend to overfit after a few epochs, meaning
that the complexity of the ANN appears excessive with the current features.

Good accuracy and low loss were considered in choosing the best‐performing deep learning model. It is
important not only to label the plazas adequately but also, if failing on the labelling, to not have them
labelled with a program that did not suit them. The selected architecture is composed of a Dense layer of
64 neurons (activation function: relu), a Dropout layer, a Dense layer of 32 neurons (activation function:
relu), and lastly, a Dense layer of five neurons (activation function: softmax), one per class.

When using the PCA Reduced dataset, the three shallow learning models and the best‐performing ANN
performed worse than the original dataset, meaning that the considered features were all relevant to the
problem definition.
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Figure 7. This figure compares both types of ML models used—shallow and deep. As mentioned, the
three shallow learning models used—the upper part of the image—perform better than the different ANN
architectures used. For the shallow learning models, the first two classes (1_concert and 2_market) are more
clearly depicted than the rest. The deep learning models tend to overfit.
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The three shallow learning models seemed to have greater potential and were further explored to
understand their confidence when labelling the different data points. The Area Under the Receiver
Operating Characteristics (AUC‐ROC) was used following a One vs. Rest approach. As seen in Figure 7, the
first two classes—1_concert and 2_market—are more appropriately depicted with the selected attributes, as
there is a clear distinction between positives and negatives. In the remaining classes—3_urban performance,
4_protest, and 5_nothing—there is a greater overlapping threshold, and in the last two the model’s
confidence drops. It is also worth mentioning how the best‐performing model, XGBoost, has a lower
AUC‐ROC average than the Random Forest Classifier model.

Our experiments showed that shallow learning models tend to overperform ANNs when training on our
synthetic dataset. This is because they are easier to tune and can pick up the inherent patterns of our data,
given our limited number of data points and features. On the other hand, deep learning models tend to
overfit the sample space due to their high complexity and large number of parameters. Unlike shallow
learning models, which are simpler and more constrained, deep learning models can learn intricate patterns
and noise in the training data. The model that performed better was the XG Boost.

To finalise the process of data gathering, dataset curation, and ML model training, we deployed the XG Boost
model in a designer‐friendly interface like Rhino (Robert McNeel & Associates, 2022) via Grasshopper using
the Hops component. This tool outputs the predicted class given the necessary information, plaza coordinates,
and the features previously explained (Figure 8).

This presented a double use. First, the research team can easily input existing plazas to test the model’s
accuracy. It has the potential to allow other designers with knowledge from certain public squares to do the

Figure 8. TheHops component fromGrasshopper allows the user to predict the use of a plaza just by inputting
the necessary features that can also be extracted from Rhino geometry. Source: Authors’ creation from
Grasshopper.
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same and help improve the process. Second, it is the first step to making a tool for preliminary urban studies
during the initial design stages of a project.

The model was tested in nine real plazas which do not stem from our synthetic dataset. Having created the
dataset exclusively from plazas in Madrid, a poorer performance was expected the further away we moved
from that city, especially from Mediterranean European plazas, as they share cultural, social, and historical
backgrounds as well as climatic and physical similarities.

We deployed the model in nine plazas worldwide grouped by their geographical proximity to Madrid.
These were:

Spanish:
• Plaza de la Corredera, Córdoba, Spain—37.8836° N, 4.7746° W.
Approximate distance to Madrid: 300 km.

• Plaça de Catalunya, Barcelona, Spain—41°23′12″ N, 2°10′12″.
Approximate distance to Madrid: 510 km.

European Mediterranean coast:
• La Place Masséna, Nice, France—43.6977° N, 7.2703° E.
Approximate distance to Madrid: 980 km.

• Piazza del Duomo, Milan, Italy—45.4642° N, 9.1897° E.
Approximate distance to Madrid: 1,190 km.

• Klafthmonos square, Athens, Greece—37.9794° N, 23.7311° E.
Approximate distance to Madrid: 2,380 km.

European:
• Platz der Republik, Berlin, Germany—52.5186° N, 13.3732° E.
Approximate distance to Madrid: 1,870 km.

• Sergels Torg, Stockholm, Sweden—59.3324° N, 18.0645° E.
Approximate distance to Madrid: 2,600 km.

International:
• Union Square, San Francisco, USA—37.7879° N, 122.4075° W.
Approximate distance to Madrid: 9,340 km.

• Hachiko Square, Tokyo, Japan—35° 39’ 32.7168’ ’ N, 139° 42’ 1.6920’ ’ E.
Approximate distance to Madrid: 10,790 km.

The main challenge during this process was finding a unique program for each square. The selected uses
were chosen according to the news available for each one of them. Even though this method is not reliable
for validation, the accuracy shift is observed when applying the model to plazas outside Madrid, as seen in
Figure 9. This can be attributed to differences in cultural, social, and environmental factors. For example, plazas
in Northern Europe may have different usage patterns and climatic conditions compared to those in Southern
Europe, affecting the model’s performance. Further tests should be conducted to support these results, and
more data should be collected from diverse geographical locations to improve the model’s generalisability.
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Figure 9. The figure shows the real plazas grouped by their geographical relationship to Madrid, the base of
the dataset. The coloured rectangles are the predicted label by the XGBoost model. In contrast, the circles
show the relevant programs on the squares.

In addition, the multitude of programs for which information was found highlights the difficulty of associating
a single label with public space.

5. Conclusions

This study presents an initial exploration into the application of ML for predicting events in urban plazas,
demonstrating the potential of data‐driven approaches in urban planning. While our study primarily focuses
on the application of ML for event prediction, it also touches upon the design and usability of urban
plazas. However, due to space constraints, the latter aspect is briefly addressed and will be the focus of
future research.

As an initial approach, the results have been satisfactory. However, the methods chosen for the dataset
generation and the strategies for solving the issues during its curation are characterised by the team’s
common cultural background and similar urban experiences. This raises awareness of the possible bias that
might have been induced while numerically encoding complex urban features.

The aforementioned bias could have been caused by using plazas solely from Madrid as seeds for the SOM,
which already skewed the dataset and feature selection toward European Mediterranean cities. A possible
solution to overcome this problem could be to use more seeds from different geographical areas for the SOM
generation. However, as presented in Section 4.2, people’s urban experience has a cultural component, and
encoding these social nuancesmight overcomplicate the dataset curation and hinder themodel training. In this
sense, the research team believes that having local urban designer teams with multiple social backgrounds
generating bespoke datasets for different geographic areas that share common cultural contexts could reduce
complexity and allow the use of simpler ML models.

Asmentioned in Section 3.3, after using the SOM relativemapping algorithm, therewas amanual input process
inwhich some datawas refined and included a posteriori using the Euclidean distance fromdata points to seeds.
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Depending on the feature selection used for creating the SOM, the resulting data distributions varied greatly,
highlighting the complexity of including the right metrics to analyse public spaces without oversimplifying the
parameters that define them. This questions the adequacy of this type of data augmentation algorithm for
this research, and the feasibility of other methods needs to be further studied.

It was also mentioned that data augmentation processes might generate unrealistic values in the dataset that
hinder learning and that need to be removed. Further studies should be carried out to look for more suitable
data augmentation processes.

Concerning theMLmodels, twomain conclusions are drawn. Firstly, from a theoretical perspective, the beauty
of urban spaces is the diversity of uses that can take place on different dates or share the same time span.
A multiclass classification model capable of outputting a single class per plaza is a rather simplistic way of
understanding urban life, even though it sets a promising initial step. A multiclass multi‐label classification
model, capable of outputting various suitable scenarios for a given urban space, is a promising further step to
improve the dataset curation and model selection.

Future steps include adding more features that better depict the different classes, especially the
underperforming ones, 3_urban performance, 4_protest, and 5_nothing, as mentioned in Section 3.5. These
features could also include more complex and intangible characteristics like sentiment analysis that could
numerically encode a subjective yet shared opinion over a given space. This would mean the inclusion of
analysis parameters that characterise the mental image of the public space based on an identity hierarchy
established by the users.

Finally, the generation of a validation dataset made from real plazas poses two significant challenges. Firstly,
assigning a unique class to an existing public square is complicated, and gathering sufficient reliable data
would be extremely time‐consuming and complex as the information is not readily available. Secondly, the
class selection might be biased by the urban experiences of the individuals tagging the space. With these two
drawbacks, the validity of the dataset could be easily compromised if not periodically verified. Therefore, we
acknowledge the limitations of our work, particularly the small dataset size and the methodological challenges
in data augmentation. Future research should aim to collect more comprehensive datasets, possibly through
collaborative urban data initiatives, to enhance model accuracy.

To conclude, this article presents a methodology that opens up a new branch of research in the urban
studies field: event suitability prediction for urban spaces. The different phases proposed, from data
collection to model training and deployment, imply a series of challenges that will have to be solved for each
specific application case: data scarcity, tedious dataset curation, model overfitting, etc. However, the
greatest difficulty lies in encoding physical spaces that host unexpected and changing events with
measurable values. In this regard, we believe this methodology requires local knowledge brought in by urban
designers to reach its full potential. All stages of the process must be closely followed by designers
knowledgeable about the research topic and capable of detecting possible failures or biases throughout. This
combination of ML and local knowledge has the potential to strengthen the impact of urban studies.
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