Open Access Journal

ISSN: 2183-7635

Article | Open Access

Crowdsourced Quantification and Visualization of Urban Mobility Space Inequality

Full Text   PDF (free download)
Views: 5450 | Downloads: 3404

Abstract:  Most cities are car-centric, allocating a privileged amount of urban space to cars at the expense of sustainable mobility like cycling. Simultaneously, privately owned vehicles are vastly underused, wasting valuable opportunities for accommodating more people in a livable urban environment by occupying spacious parking areas. Since a data-driven quantification and visualization of such urban mobility space inequality is lacking, here we explore how crowdsourced data can help to advance its understanding. In particular, we describe how the open-source online platform What the Street!? uses massive user-generated data from OpenStreetMap for the interactive exploration of city-wide mobility spaces. Using polygon packing and graph algorithms, the platform rearranges all parking and mobility spaces of cars, rails, and bicycles of a city to be directly comparable, making mobility space inequality accessible to a broad public. This crowdsourced method confirms a prevalent imbalance between modal share and space allocation in 23 cities worldwide, typically discriminating bicycles. Analyzing the guesses of the platform’s visitors about mobility space distributions, we find that this discrimination is consistently underestimated in the public opinion. Finally, we discuss a visualized scenario in which extensive parking areas are regained through fleets of shared, autonomous vehicles. We outline how such accessible visualization platforms can facilitate urban planners and policy makers to reclaim road and parking space for pushing forward sustainable transport solutions.

Keywords:  big data; bin packing; crowdsourcing; data visualization; mobility; OpenStreetMap; sustainable transport; transport justice; urban space inventory; volunteered geographical information


Supplementary Files:


© Michael Szell. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 license (, which permits any use, distribution, and reproduction of the work without further permission provided the original author(s) and source are credited.